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Roland Netz : “Liquid at interfaces from a numerician viewpoint”
1. Interfacial water (theory & simulations)
2. Charged surfaces (theory & simulations)
3. Liquid Flow at surfaces (theory & simulations)

Lydéric Bocquet: "Nanofluidics and osmotic processes" 
1. Ionic transport at the nanoscales: linear and non-linear transport
2. Flows at surfaces and in confinement (experiments)
3. Osmotic processes: fundamentals and applications

Ramin Golestanian :  “Phoretic active matter” 
1. What is Diffusiophoresis
2. Microscopic Theory of Diffusiophoresis
3. Self-diffusiophoresis
4. Stochastic Dynamics of Phoretically Active Particles
5. Experiments on Self-phoresis
6. Mixtures of Apolar Active Colloids: Active Molecules
7. Mixtures of Apolar Active Colloids: Stability of Suspensions
8. Polar Active Colloids: Moment Expansion
9. Non-equilibrium Dynamics of Active Enzymes
10. Phoresis on the Slow Lane: Trail-following Bacteria
11. Chemotaxis and Cell Division 

1. Foam structure.
2. Dissipation in foams
3. Non aqueous flow in foams

Frieder Mugele : “Experimental probes of surface interactions” 

Jacco Snoeijer : “Soft wetting”
1. Elastocapillary interfaces
2. Soft wetting statics
3. Soft wetting dynamics

Elise Lorenceau: “Flows in foams” 

1. Physical principles of ion adsorption and charge regulation in 
electric double layers (focus on modeling starting with double layer 
theory, derivation of PB equation from variational energy 
minimization)

2. Probing surfaceforces and surface charges using Atomic Force 
Microscopy (focus on experimental techniques and specific results)

3. Physical principles of electrowetting (1h basic principles; 1h 
application examples) 



Liquid at interfaces from a numerician viewpoint

Roland Netz

 Interfacial water (theory & simulations)

 Charged surfaces (theory & simulations)

 Liquid Flow at surfaces (theory & simulations)  
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Hydration Friction in Nanoconfinement: From Bulk via Interfacial to
Dry Friction
Alexander Schlaich, Julian Kappler, and Roland R. Netz*

Fachbereich Physik, Freie Universitaẗ Berlin, Arnimallee 14, 14195 Berlin, Germany

*S Supporting Information

ABSTRACT: The viscous properties of nanoscopically
confined water are important when hydrated surfaces in
close contact are sheared against each other. Numerous
experiments have probed the friction between atomically flat
hydrated surfaces in the subnanometer separation regime and
suggested an increased water viscosity, but the value of the
effective viscosity of ultraconfined water, the mechanism of
hydration layer friction, and the crossover to the dry friction
limit are unclear. We study the shear friction between polar
surfaces by extensive nonequilibrium molecular dynamics
simulations in the linear-response regime at low shearing velocity, which is the relevant regime for typical biological
applications. With decreasing water film thickness we find three consecutive friction regimes: For thick films friction is governed
by bulk water viscosity. At separations of about a nanometer the highly viscous interfacial water layers dominate and increase the
surface friction, while at the transition to the dry friction limit interfacial slip sets in. Based on our simulation results, we construct
a confinement-dependent friction model which accounts for the additive friction contributions from bulklike water, interfacial
water layers, and interfacial slip and which is valid for arbitrary water film thickness.

KEYWORDS: Friction, hydration, nanoconfinement, viscosity, water, molecular dynamics simulations

The viscous properties of confined water are relevant for
colloidal jamming, surface drainage, lubrication of joints,

and nanofluidics.1−4 Consensus has been reached that the
standard hydrodynamic description using bulk water viscosity
works for surface separations above a few nanometers,5−8 but
the precise value of the effective viscosity of ultraconfined water
in the subnanometer separation is not clear.7,9−13 Apart from
the value of the viscosity of ultraconfined water, a fundamental
question that is difficult to address experimentally is how the
friction between wet surfaces crosses over to the dry-friction
limit, which is obtained for high loads when all water is
squeezed out from between the surfaces. In fact, standard
hydrodynamic theory predicts the shear friction between
surfaces that are separated by a fluid layer to diverge as the
fluid film thickness goes to zero. On the other hand, it is
expected that friction forces are finite in the dry limit. It is
difficult to probe this transition from wet to dry friction
experimentally, because the high pressures needed to squeeze
all water out cannot be easily generated with common
experimental techniques. However, in biolubrication applica-
tions, the dry limit is important. For example, in joint
lubrication, forces of the order of a few grams are sufficient
to squeeze the water completely out if the surface area is small
enough, as we show at the end of this paper. Thus, a
microscopic picture of water-mediated nanoscale friction at the
border between hydrodynamic friction and dry friction is
clearly needed but at present missing.

Classical lubrication theory14 describes the friction between
wet solids as the crossover between the nonlinear hydro-
dynamic regime, where a finite surface separation under load is
maintained by hydrodynamic lift and friction is governed by
bulklike fluid viscosity, and the boundary regime, where
surfaces touch at isolated contact zones and the friction
properties are similar to dry friction as described by Amontons’
heuristic law.15 With the advent of experimental nanoscale
techniques the so-called hydration friction scenario has moved
into the focus: here, the water film is of nanoscopic thickness
and stabilized not by hydrodynamic lift forces but rather by the
hydration repulsion between hydrophilic surfaces.16,17 This
regime persists up to extremely high loads since the hydration
pressure between sufficiently polar surfaces reaches several
kbars at surface contact. Many experiments considered the
idealized geometry of weakly curved flat surfaces and
determined the force response to lateral or normal surface
motion. Early measurements showed that the fluid viscosity
stays bulklike down to surface separations of a few nanome-
ters.5−7 Later experiments also probed the subnanometer
separation range and demonstrated the friction to change
dramatically as the last water layers are squeezed out.10−13,18−20

However, the experimental results are diverse, some showing a
crossover between elastic and viscous response,21 some
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suggesting confinement-induced freezing,22 while others
demonstrating pronounced oscillatory viscosity profiles at
small surface separations.23 The plethora of conflicting results
and interpretations is not surprising: To measure friction
between surfaces at nanometer separations, the surfaces must
be atomically smooth, clean, and free of defects, since surface
inhomogeneities give rise to strong friction contributions that
typically are nonlinear in the shearing velocity.12,24,25 In fact,
only some of the experiments demonstrated to be in the linear
friction regime,10,26 which is a prerequisite to infer the
Newtonian fluid viscosity from the shear-force response. As
an additional complication, it was recently demonstrated that
surface elasticity leads to a non-negligible and even dominating
contribution to the measured strain−stress relation at nano-
meter separations, in particular if fluid drainage is imposed by
normal relative surface motion.27

Simulations however can be designed to sidestep these
pitfalls, as surface irregularities and contaminations can be
avoided, and the perfect shear geometry of planar parallel
surfaces is straightforwardly imposed. Indeed, early atomistic
simulations demonstrated that water diffusivities are reduced at
polar surfaces19,28−32 and that the viscosity of water increases
when under confinement.29 The advantage of simulations in the
idealized planar shear geometry is that not only the mean
viscosity, averaged over the entire fluid film, can be deduced but
that mechanistic insight into hydration friction can be gained
from the locally resolved shear velocity profile across the
confined water film.31,33,34 In fact, effective viscosity profiles can
be derived from time-averaged shear velocity profiles on the
linear-response level (see Methods) and have broad applic-
ability to other interface-dominated flow scenarios such as
Poiseuille, electrophoretic/osmotic, and shear or drainage flow
in ultra confinement. This forms the motivation and conceptual
pivot point of the present work.
In our nonequilibrium molecular dynamics simulations we

shear two polar decanol CH3(CH2)9OH bilayers against each
other at imposed velocities ±v0, see Figure 1 (a) for the setup
that closely mimics experiments with self-assembled mono-
layers.13,24,25 The number Nw of water molecules is adjusted for
each box height Lz such that the chemical potential equals bulk
water35 (see Methods). We are particularly interested in the
transition from the hydrodynamic friction regime, obtained at
large surface separation and where the friction force is
dominated by the bulk water viscosity, to the dry boundary
friction regime, where the normal pressure is of the order of 10
kbar and thus sufficient to squeeze all water out. In between we
obtain the interfacial friction regime, where the friction is
dominated by interfacial water layers with a substantially
increased viscosity. Interestingly, and this is one of the main
results of our paper, the effective viscosity within the interfacial
layers, which have a thickness of about 0.4 nm for large surface
separation, increases significantly as the water layer thickness
goes down. Our simulations thus indicate a dynamic shear
freezing transition of interfacial water upon ultra confinement.
The effect of this dramatic viscosity increase on the shear
friction is however rather mild, since with decreasing water
layer thickness interfacial slip sets in, thus producing a smooth
transition to the dry-friction regime that is characterized by a
finite surface friction coefficient.
All our results are obtained in the linear friction regime,

which we make painstakingly sure by monitoring the shear-
velocity dependence of our results. In this limit, the standard
friction coefficient,15 defined as the ratio between friction and

normal force, μ = Ff/Fn, is linear in the shear velocity and has
only anecdotal relevance in the present context: Trivially, it can
be made arbitrarily low by decreasing the shear velocity. Rather,
we here concentrate on the linear shear friction coefficient, γ =
Ff/(v0A), which results from the friction force by dividing by
the shear velocity and the area A. The linear regime is for
smooth surfaces obtained below shear velocities v0 in the cm/s
to m/s range and thus relevant for most biological shear
scenarios.3

Hydration Pressure. Figure 1 (c) shows the normal
pressure Pz versus the surface separation Dw, defined as Dw =
Nwvw/A, where vw = 0.0304 nm3 is the molecular bulk water
volume, Nw is the number of water molecules per water slab,
and A = 5.198 × 4.502 nm2 is the lateral area of the simulation
box. This definition of Dw is equivalent to the distance between
the water Gibbs-dividing surfaces (GDS) and allows for direct
comparison with experiments, where the same definition is
used.17 In contrast to rigid surfaces, where oscillatory pressure
profiles are seen in experiments16 and in simulations,36,37 our
soft polar surfaces give rise to an exponential monotonic
repulsion

= λ−P D P( ) ez
D

w 0
/w (1)

indicated by a solid line, with a decay length λ = 0.87 ± 0.02 Å
and an extrapolated dry pressure of P0 = 19 ± 1 kbar, quite
similar to pressures in dehydrated phospholipid bilayer stacks.17

For larger separation Dw > 0.5 nm, the interlayer pressure is
essentially zero within our accuracy of about ±10 bar, as seen in
the inset of Figure 1 (c).

Figure 1. Simulation setup and confinement-dependent normal
pressure. (a) Snapshot of the periodically replicated simulation system
for total box height Lz = 9.9 nm and surface separation Dw = 2.27 nm.
Shear is imposed by moving the two decanol bilayers at prescribed
velocities v0 against each other. (b) Chemical structure of decanol,
positional restraints are indicated by springs. (c) Pressure-separation
curve at fixed water chemical potential. The solid line is an exponential
fit, and the inset shows the normal pressure Pz at large Dw in lin-lin
presentation.
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Linear Friction Regime. The linear regime, where the
friction force is proportional to shear velocity, is relevant for
most practical situations, but in simulations (as well as in
experiments) it is often not easily achieved. In Figure 2 (a) we
plot the mean friction force Ff acting on the surfaces for a few
values of Dw as a function of the imposed shear velocity v0. For
all Dw, we find for small enough v0 a linear regime where Ff is
proportional to v0, as is expected from linear response theory.
Decreasing Dw (corresponding to an increased vertical pressure
load, as follows from Figure 1 (c)) at fixed v0 leads to an
enormous increase in the friction force by several orders of
magnitude. Dry friction for Dw = 0 is studied in the absence of
water at a pressure of Pz ≈ 10 kbar (see the Supporting
Information), and the linear response limit is reached for
velocities smaller than about 1 mm/s. A simple scaling theory
based on the thermally activated crossing over energetic
barriers that have a typical length scale b predicts the transition
from linear to nonlinear friction to occur at a characteristic

friction force per area of ∼*F A k T b/ /f B
3.38 For our system the

length scale b corresponds to the lateral separation between

decanol head groups, which is b ≃ 0.5 nm. With the thermal
energy kBT ≃ 4 × 10−21 J we obtain a crossover force of

* ∼ × =F A/ 3 10 N/m 30 pN/(nm)f
7 2 2. Looking at the data

in Figure 2 (a) we see that this simple estimate correctly
predicts the order of magnitude of the transition between the
linear and nonlinear regimes. In particular, since it is the friction
force that governs the onset of nonlinear effects, the actual
shear velocities at the crossover between the linear and
nonlinear regimes sensitively depend on the surface separation
Dw. Using the simple scaling estimate for *F A/f it also
transpires why the linear friction regime can be difficult to
obtain experimentally: Assuming rough surfaces with a
roughness wavelength of about b ≃ 1 μm, which is a typical
v a lue , the c ros sove r fo rce dec rea se s down to

* ∼ × −F A/ 4 10 N/mf
3 2, and the corresponding crossover

shear velocity would be (assuming the same friction coefficient
γ we find for dry decanol layers) ∼* −v 10 m/s0

13 . Experiments
at such low shear velocities are practically impossible to
perform, thus our study is most relevant for atomically flat
surfaces.

Figure 2. Confinement-dependent shear friction. (a) Friction force Ff versus shear velocity v0 for different surface separations Dw. Solid lines are
linear fits. (b) Simulated linear friction coefficient γ = Ff/(v0A) (open symbols) as a function of Dw, compared with the bulk prediction γ = 2ηb/Dw
(dashed blue line) and the friction model eq 6 (solid black line). The inset shows the transition to dry friction at Dw = 0. (c) Friction coefficient γ
versus normal pressure Pz; the line denotes the friction model eq 6 combined with eq 1.

Figure 3. Simulated density and shear velocity profiles. Water (blue solid lines) and decanol (green broken lines) mass density profiles are shown in
(a)−(c) for different surface separations Dw. Corresponding velocity profiles for water (blue spheres) and decanol (green diamonds) are shown in
(d)−(f); the horizontal green lines denote the imposed shear velocity v0. The blue straight lines denote the expected Couette bulklike velocity profile
vx(z) = −zFf/(Aηb), and the red straight lines denote fits to the interfacial velocity profile from which the interfacial viscosity ηi is deduced. The
crossing between the blue and red lines defines the width H of the interfacial layer (shown in orange). For Dw = 0.23 nm in (f) a finite slip velocity
vslip at the decanol−water interface at z = −Dw/2 is observed.
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Hydration-Dependent Linear Friction Coefficient. In
Figure 2 (b) we show the linear friction coefficient γ = Ff/(v0A)
(data points) as a function of the surface separation Dw (the
curve follows from our confinement-dependent friction model
to be explained below). The results for γ, which are averaged
over shear velocities in the linear regime where Ff ∼ v0, increase
by 5 orders of magnitude as Dw decreases from Dw = 8.1 nm
down to Dw = 0. The blue dashed line shows the hydrodynamic
prediction based on water bulk viscosity, γ = 2ηb/Dw, where ηb
= 0.695 ± 0.001 mPa s is the SPC/E bulk water viscosity
(independently determined from bulk simulations, see the
Supporting Information, and close to the values reported by
other authors39−42). Whereas the −Dw

1 law is excellent for Dw ≫
1 nm, for smaller separations it fails in two aspects: First, γ
increases stronger than the bulk prediction for Dw < 1 nm,
which suggests an interfacial water layer with increased
viscosity.29,33,43 Second, the −Dw

1 law diverges as Dw → 0, in
con t r a s t t o the fin i t e d r y f r i c t i on coeffic i en t
γdry = 2.2 × 1010 kg m−2 s−1 obtained for Dw = 0 at the
extrapolated contact pressure (see inset of Figure 2 (b)), which
reflects a finite surface slip. Clearly, to understand these two
opposing tendencies, we need an in-depth local understanding
of interfacial friction.
From Shear-Velocity to Effective Viscosity Profiles.

Figure 3 shows mass density (top) and velocity profiles
(bottom) for a few different separations Dw, where z = 0
denotes the water slab center. The water (in blue) and decanol
(in green) densities exhibit pronounced interfacial broadening
and overlap over an interfacial thickness of about 0.5 nm
around the GDS position z = ±Dw/2 (indicated by vertical
black lines). The water density shows no oscillations, as
expected for our relatively soft surfaces,36,37 and for Dw = 4.27
nm and Dw = 0.86 nm reaches bulk water density in the water
slab center. For Dw = 0.23 nm in Figure 3 (c), the maximal
water density is significantly lower than in bulk, and the
opposing decanol headgroups overlap.
The decanol velocity profiles in Figure 3 (d)−(f) (green

diamonds) scatter around the imposed shear velocity v0, as
expected for an elastic solid in the stationary shear limit. The
water velocity profiles vx(z) (blue spheres) are more complex
and allow for defining an effective water viscosity profile ηeff(z)
in the following manner: In the stationary limit and sufficiently
far from the surface, the shear stress is constant in space and
time, equals the externally applied friction force, and is given by

η= − ∂F A z v z( ) ( )z xf eff (2)

In the Methods, eq 2 is rigorously derived from the nonlocal
linear stress−strain relation using the conditions of stationarity

and lateral homogeneity, also accounting for the finite width of
the decanol−water interface. Contrary to an idealized hydro-
dynamic boundary, the surface water forces in our system act
over a finite range, depending on the extent of decanol−water
intermixing, as illustrated in Figure 3 (a)−(c), and on the range
of intermolecular interactions. The resulting shear force profiles
that act on the water molecules are discussed in the Supporting
Information. In particular, ηeff(z) and vx(z) are properly defined
as averages over fluctuating microscopic quantities, and the
derivation needs no locality or continuity assumption.
For large separation Dw = 4.27 nm in Figure 3 (d), the

velocity profile in the water slab center corresponds to Couette
flow, vx(z) = −zFf/(Aηb), as indicated by the blue solid line.
Close to the surface, the water velocity profile exhibits a smaller
slope, which according to eq 2 indicates an increased interfacial
effective water viscosity ηi. A linear fit denoted by the red line
yields ηi as well as the interfacial layer width H, indicated by an
orange slab that extends from the GDS position z = −Dw/2 to
the crossing with the linear bulklike velocity profile at z =
−Dw/2+H. Alternative fit models for the viscosity profile are
possible but do not change our conclusions (see the Supporting
Information). Note that for Dw = 0.23 nm in Figure 3 (f) the
thickness of the bulklike water region is basically zero, while the
water velocity at the GDS position z = −Dw/2 does not equal
the imposed surface velocity v0 but exhibits significant slip vslip =
v0 − vx(−Dw/2). The emergence of a finite slip is not really
surprising since in the dry limit Dw = 0 nm, i.e. in the absence of
water, the opposing surfaces necessarily show complete slip, i.e.
vslip = v0. Our simulations reveal that the dry friction limit is
approached smoothly by a gradually increasing slip as Dw → 0.
The derived interfacial viscosity ηi is shown in Figure 4 (a) as

a function of Dw together with the heuristic expression

η η η= − +λ
∞(e 1)D

i i,0
/

i,
i w

(3)

which for small Dw increases significantly. This confirms
previous reports of frozen water in strong confinement.22,44

The fit to the data yields ηi,0 = 0.1 mPa s and λi = 1.2 nm. For
large Dw the interfacial viscosity saturates at ηi,∞ = 1.5 ± 0.1
mPa s, significantly higher than the bulk value, ηb = 0.7 mPa s,
in qualitative agreement with previous simulation results for
water at a single hydrophilic diamond surface.33 An increase of
water viscosity in the hydration layer around polar objects has
also been inferred from electrokinetic45 and NMR experi-
ments46 and thus seems to be a general feature.
The Dw-dependent interfacial water layer thickness H is

shown in Figure 4 (b) and fitted with the heuristic expression

= +−
∞
− −H D H(( /2) )w

3 3 1/3
(4)

Figure 4. Parameters of the confinement-dependent friction model. (a) Interfacial viscosity ηi versus surface separation Dw. The solid line shows the
function eq 3. (b) Interfacial water layer thickness H. The dashed red line shows the maximal value H = Dw/2; the solid line shows the function eq 4.
(c) Interfacial slip vslip/v0. The inset shows the slip coefficient γslip = (Ff/A)/vslip together with the function eq 5.
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For small Dw, we obtain H ≃ Dw/2, as indicated by the
dashed red line in Figure 4 (b). At large Dw, H saturates at H∞
= 0.39 ± 0.01 nm, similar to previous simulations.33

In Figure 4 (c) we show the decanol−water slip velocity vslip,
rescaled by the shear velocity v0. For the smallest separation Dw
= 0.18 nm significant slip of vslip/v0 ≃ 0.24 is observed. Clearly,
full slip vslip/v0 = 1 is obtained in the dry limit Dw → 0. In the
inset we show the slip coefficient γslip = (Ff/A)/vslip together
with the fit function

γ γ γ γ= − +λ
∞

−
∞( )e D

slip dry slip,
/

slip,
w slip

(5)

At Dw = 0 the dry friction coefficient γdry = Ff/(Av0) = 2.2 ×
1010 kg m−2 s−1 is obtained from simulations of decanol bilayers
in the absence of water at a pressure of Pz ≈ 10 kbar (open
diamond in Figure 4 (c)). The slip velocities vslip are zero within
our accuracy for Dw > 0.5 nm, we thus only fit γslip for Dw < 0.5
nm and obtain γslip,∞ = 8 × 107 kg m−2 s−1 and λslip = 0.07 nm.
For our layered planar shear geometry, the inverse friction

coefficient by integration of eq 2 separates into slip, interfacial,
and bulk contributions according to

γ γ η η
≡ = + +

−v
F A

H D H1
/

1 /20

f slip i

w

b (6)

This prediction is, using the heuristic expressions for ηi, H,
and γslip in eqs 3−5, compared with the simulation data for γ in
Figure 2 (b). By construction, the agreement is excellent. In
Figure 5 we plot the simulated inverse friction coefficient 1/γ
(white stars) and the prediction according to eq 6 (black line)
as a function of Dw on logarithmic scales. Now the slip,
interfacial, and bulk friction contributions in eq 6 are additive
and denoted by green, red, and blue lines, respectively. The

dominant friction mechanism depends on the hydration level:
At large separations Dw > 1 nm, corresponding to more than
Nw/Nd ≈ 3 water molecules per decanol (see upper scale), bulk
friction dominates, and the bulk hydrodynamic friction law γ =
2ηb/Dw (blue broken line) is valid. In the ultraconfined regime,
for Dw < 0.15 nm or below half a hydration water per surface
group, slip becomes dominant and furnishes the smooth
crossover to the dry friction limit, denoted by a horizontal
green broken line to the left. For intermediate separations 0.15
nm < Dw < 1 nm the inverse friction is smaller than predicted
by bulk hydrodynamics (broken blue line) and dominated by
the interfacial water layers of thickness H with an increased
viscosity ηi. The confinement-dependent friction between
planar smooth surfaces thus features three distinct friction
modes.
In experiments the friction force is typically reported for fixed

shearing or sliding velocity as a function of the normal load.24

To connect to our results, in Figure 2 (c) we plot the velocity-
independent linear friction coefficient γ versus the normal
pressure Pz. In the logarithmic main plot γ is seen to vary
steeply for small pressures Pz < 50 bar. The inset reveals quasi-
Amontons-like scaling γ ∼ Pz for intermediate pressures 50 bar
< Pz < 500 bar, similar to experimental reports.24 The reason
for this is that both Pz and γ decrease for small Dw in an
approximately exponential manner (see Figure 1 (c) and inset
in Figure 2 (b)). We note that the mechanism by which we
observe the quasi-Amontons scaling γ ∼ Pz is very different
from the mechanism that governs the friction between
macroscopic rough dry surfaces, which is described by the
heuristic Amontons law.15 In the latter case it is the
combination of roughness and plasticity that makes the friction
force proportional to the normal force.
While Amontons law holds for dry as well as weakly wetted

rough surfaces at elevated shear velocities, where the friction
force does not depend on shearing velocity, the friction
between rough surfaces in the presence of a lubricating fluid
typically shows a pronounced shear velocity dependence. In the
so-called boundary lubrication regime of the Stribeck curve, the
friction force decreases drastically with the sliding velocity
within a characteristic finite velocity window.14 This regime is
caused by hydrodynamic lift forces which push the surfaces
away from each other and thereby eliminate contact zones
between the rough surfaces. At even larger shearing velocities
the friction force typically increases with the shearing velocity
due to the balance of normal load and hydrodynamic lift
force.14 We note that these effects are caused by the
combination of roughness and hydrodynamic lift effects at
large shear velocities, whereas our results are relevant in the
linear response regime of small shear velocities where the
surface separation results from the balance of normal load and
hydration repulsion.
Although derived for planar surfaces, our confinement-

dependent viscosity model eq 6 is also relevant for rough and
weakly curved surfaces, which we illustrate next. The crossover
between the slip and interfacial friction regimes occurs close to
Dw ≈ 0.2 nm (see Figure 5), corresponding to an enormous
hydration pressure of about Pz ≈ 1 kbar (see Figure 1 (c)). In
fact, such a pressure is produced for a contact area of A = 100
μm2 by the modest weight of 1 g. Thus, our crossover scenario
from bulk over interfacial to slip friction is very relevant for
rough surfaces, since local pressures in small contact zones can
be enormous. With a friction coefficient value γ ≈ 108 kg/(m2s)
for Dw ≈ 0.2 nm (from Figure 5) we obtain for a shear velocity

Figure 5. Confinement-dependent friction regimes. Comparison of the
simulated inverse friction coefficient 1/γ (white stars) with the
confinement-dependent friction model eq 6 (black line). Crossings
between the slip, interface, and bulk friction contributions (green, red,
and blue lines) define three distinct friction regimes. The bulk friction
prediction is denoted by a blue broken line; the dry friction limit Dw =
0 is denoted by a horizontal green broken line.
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v0 = 1 m/s (which for Dw ≈ 0.2 nm is at the border between the
linear and nonlinear friction regimes, as seen in Figure 2 (a)) a
friction force per area of Ff/A = γv0 = 108 Pa. The ratio of
friction and normal force is therefore equal to μ = Ff/(APz) = 1
for Pz ≈ 1 kbar and v0 = 1 m/s and is linear in v0. Thus, for a
reduced shear velocity of v0 = 1 mm/s and the same pressure
we obtain the drastically reduced ratio μ = Ff/(APz) = 0.001, a
typical value measured in hydration friction experiments.47

Similar to these estimates, friction forces for arbitrary loads and
shear velocities can be derived directly from our confinement-
dependent viscosity model eq 6.
Methods. MD Simulations. We simulate two bilayers

consisting of 4 × 100 polar decanol molecules, separated by
two water slabs, see Figure 1 (a) for a snapshot. Force-field
parameters are based on GROMOS53A6,48 decanol hydroxyl
groups are represented in atomistic detail, and CH2 and CH3
groups are represented as united atoms. The repulsion between
headgroup oxygens is increased to reduce intrasurface hydrogen
bonding.37 The SPC/E water model49 is employed. Simulations
are performed using version 5.0 of the GROMACS simulation
package50 at T = 300 K with periodic boundary conditions and
are analyzed using the MDAnalysis package.51

The decanol molecules are fixed on a hexagonal lattice by
harmonic position restraints. To allow for shear in the x
direction, the first two and last two carbon-groups are fixed
only in y and in z directions with harmonic constants ky = 500
kJ/mol and kz = 10 kJ/mol, as indicated in Figure 1 (b). The
lateral area of A = 5.198 nm × 4.502 nm of the simulation box
corresponds to the tensionless state in vacuum with an area per
chain a = A/Nd = 0.234 nm2, where Nd = 100 is the number of
decanol molecules per monolayer. Lennard-Jones interactions
are truncated at rc = 0.9 nm; for the electrostatic interactions
the Particle Mesh Ewald method52 is employed with a real-
space cutoff rc = 0.9 nm.
Constant Velocity Pulling. Shear is achieved by pulling the

two bilayers against each other at constant velocity v0. To this
end the time-dependent potential

= − −U t
k

l t l v t( )
2

( ( ) ( (0) 2 ))x x 0
2

(7)

acts on the center of mass (COM) of each bilayer, where k is
the force constant, lx is the distance between the COMs of both
bilayers in the x direction, and t is the simulation time. The
resulting shear force Ff(t) = −dU(t)/dlx(t), weighted by the
atomic mass, acts on all bilayer atoms. The force constant k has
to be carefully adjusted, see the Supporting Information for
technical details. All simulations are performed for at least 1 μs,
for Dw < 0.25 nm typically for 5 μs. Error estimates for the
shear force Ff and the velocity profile vx(z) are obtained via
block-averaging.
Thermodynamic Extrapolation. The total number of water

molecules in each water slab is varied between Nw = 0 and Nw =
6368. First, simulations without shear are performed in the
NwALzT ensemble at constant volume V = ALz, and the number
of water molecules Nw is adjusted via thermodynamic
extrapolation to yield a constant water chemical potential
(see the Supporting Information and refs 35 and 53 for details).
In order to obtain a pressure resolution of about 10 bar, the
accumulated simulation time per data point in Figure 1 (c) is
about 6 μs. Simulations at finite shear are then performed at the
same box size and water number.
Definition of a Local Effective Viscosity Profile. In the

literature one can often read the statement that hydrodynamic

approaches become invalid at scales corresponding to the
molecular size, which for the case of water would be the
nanometer scale. Although the statement is correct in many
situations, it is typically based on the spurious notions that
hydrodynamic formulations are necessarily (i) continuous and
(ii) described by homogeneous, bulklike, and local shear-strain
response functions. We here show how hydrodynamic
equations, which reflect the conservation of momentum, a
condition that arguably holds at any length scale, in conjunction
with nonlocal linear-response theory, allow to define a spatially
dependent effective viscosity profile without invoking any
locality or continuum assumption. As we show, the main reason
that the standard hydrodynamic description fails at the
nanoscale is not related to the discreteness of water molecules
or to fluctuating densities but rather to the finite range of
surface-fluid interactions, for which we propose a simple fix in
terms of a suitable definition of an effective viscosity profile.
We start with the momentum balance equation of the i-th

Cartesian component for a viscous fluid,

ρ σ= + ∇t
v t

t
f t tr

r
r r( , )

d ( , )
d

( , ) ( , )i
i j ij (8)

where f is the local external force density acting on the fluid, σ
is the stress tensor, and d/dt = ∂/∂t + vj(r,t)∇j is the substantial
time derivative. Note that indices that doubly appear are
summed over. We consider a stationary state but at the same
time allow the instantaneous velocity, stress tensor, density, and
force to fluctuate around their stationary values. Averaging the
entire equation over the lateral coordinates x and y as well as
over time, we are left with the time independent equation for
the averaged x-component

σ= ̅ + ∇ ̅f z z0 ( ) ( )x z xz (9)

where the averaged force and stress profiles are denoted by
fx̅(z) and σ̅xz(z). All other components are zero because of the
surface boundary conditions and lateral translational invariance.
Integrating this equation once we obtain

σ= ̅ + ̅G z z0 ( ) ( )x xz (10)

where the external shear stress ∫̅ = ′ ̅ ′
−∞

G z z f z( ) d ( )x
z

x results

from the integral over the force density profile. We consider
here the simplified geometry of a single interface where the
moving solid is located at z < 0 and the fluid at z > 0. For the
shear scenario, the total friction force Ff acting on the liquid is
given by G̅x(∞) = Ff/A (note that for pressure or electric-field
driven flow scenarios, which we do not explicitly consider here,
the external force acting on the fluid is counteracted by the
stationary surface and in that case G̅x(∞) = 0). From eq 10 we
see that in the region where the force density fx̅(z) is zero, the
external stress G̅x(z) and thus also the fluid stress σ̅xz(z) are
constant.
The linear but nonlocal response relation between velocity

gradient and stress is (for the relevant xz-component) given by

∫ η σ∂ = ′ ′ ′ ′ ′ ′−v t t t t tr r r r r( , ) d d ( , , , ) ( , )z x xznl
1

(11)

We assume that the nonlocal response function is
homogeneous in time and the lateral spatial coordinates and
thus can be written as η − ′ − ′ ′ − ′− x x y y z z t t( , , , , )nl

1 , which
is a nontrivial assumption. Averaging the entire equation over x,
y, t we obtain
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∫ η σ∂ ̅ = ′ ′ ′ ′ ′−v z t z z tr r( ) d d ( , ) ( , )z x xznl
1

(12)

We can now perform the remaining integrals over x′, y′, and
t′ and obtain

∫ η σ∂ ̅ = ′ ′ ′−v z z z z z( ) d ( , ) ( )z x xznl
1

(13)

If we assume the stress σ̅xz(z′) to be constant in space, we
can perform the remaining integral over z′ and obtain

σ η̅ = ∂ ̅z v z( ) ( )xz z x (14)

where

∫η η≡ ′ ′−z z z z1/ ( ) d ( , )nl
1

(15)

defines the local viscosity profile. We see from eq 10 that in this
scenario the external stress profile G̅x(z) is constant and given
by G̅x(z) = Ff/A, in other words, the surface-fluid interactions
are assumed to have a vanishing range. By combining this with
eq 10 and eq 14 we arrive at eq 2 in the main text, where in this
simplified case there is no difference between the effective
viscosity profile ηeff(z) that appears in eq 2 and the viscosity
profile η(z) defined in eq 15. Note that in order to arrive at this
equation, we did not assume the viscosity response function to
be local, rather, the viscosity profile η(z) involves an integral of
the nonlocal viscosity response function over space and thus
fully includes interfacial effects and the nonlocality of the
viscosity response. If on the other hand G̅x(z) and thus σ̅xz(z)
vary on length scales comparable to the length scales over
which ∂zvx̅(z) varies, we define

∫η η σ σ≡ ′ ′ ̅ ′ ̅
−z dz z z z z1/ ( ) ( , ) ( )/ ( )xz xznl

1
(16)

and from eq 13 obtain the modified formula

σ η̅ = ∂ ̅z z v z( ) ( ) ( )xz z x (17)

Note that in this case the viscosity profile η(z) depends on
details of the external shear stress profile G̅x(z) = −σxz(z),
which reflects the finite range of the surface-fluid interactions.
Combining eq 17 with eq 10 we see that the inverse slope of
the shear velocity profile corresponds in this more realistic
scenario to an effective viscosity profile ηeff(z) which
incorporates the effects of the external stress profile G̅x(z)
according to

η
η

≡
̅

= −
∂ ̅

z
z F A

G z
F A
v z

( )
( ) /

( )
/
( )x z x

eff
f f

(18)

This is the general derivation of eq 2 in the main text. In the
limit Gx(z) = Ff/A we see that the effective viscosity profile
ηeff(z), which includes the effects of a spatially varying external
stress profile G̅x(z), and the bare viscosity profile η(z) defined
in eq 15 are the same. Note that the definition of the effective
viscosity profile ηeff(z) is valid at arbitrary scales since all
quantities are averages over microscopic, fluctuating quantities.
Also, the effective viscosity profile does not need to be
continuous but instead can consist of multiple steps and
discontinuities.
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ABSTRACT: We perform atomistic simulations of nano-
meter-separated charged surfaces in the presence of
monovalent counterions at fixed water chemical potential.
The counterion density profiles are well described by a
modified Poisson−Boltzmann (MPB) approach that accounts
for nonelectrostatic ion−surface interactions, while the effects
of smeared-out surface-charge distributions and dielectric
profiles are found to be relatively unimportant. The simulated
surface interactions are for weakly charged surfaces well
described by the additive contributions of hydration and MPB
repulsions, but already for a moderate surface charge density
of σ = −0.77 e/nm2 this additivity breaks down. This we
rationalize by a combination of different effects, namely,
counterion correlations as well as the surface charge-induced reorientation of hydration water, which modifies the effective
water dielectric constant as well as the hydration repulsion.

■ INTRODUCTION

Many biologically and industrially relevant surfaces are charged
in water; classical examples are lipid membranes,1−3 ionic
surfactant layers,4 and solid surfaces such as glass, silica, or
mica.5−8 The experimental and theoretical descriptions of the
interaction between charged surfaces across aqueous electro-
lytes forms the foundation of colloidal science. The celebrated
Poisson−Boltzmann (PB) theory9 relies on a mean-field
approximation for the ion distribution and becomes valid
when surface charge density and ion valencies are low and thus
ion correlations are negligible. The usual formulation of PB
theory treats water as a dielectric continuum described by a
local and spatially homogeneous dielectric constant. According
to PB theory, the interaction pressure between similarly
charged surfaces is always repulsive. Numerous experiments
confirmed this prediction and found an exponentially decaying
surface pressure for large surface separation with a decay length
that depends on the added salt concentration.5−8

Surface separations in the nanometer range have been
investigated in experiments and simulations for systems such as
silica,10−14 clay,15,16 or membrane stacks.17−21 At such low
surface separations, an additional, exponentially decaying
repulsive pressure contribution is present, which is similar to
the hydration pressure found for soft polar surfaces with a zero
net charge.17−20 Experimental pressures between charged
surfaces have been successfully fitted by assuming additivity

of hydration and PB contributions.22−25 However, such fits are
of only limited persuasive power since the surface charge
density and its location are in most cases mere fitting
parameters.
Indeed, additional effects, that are particularly important for

nanometer surface separations, suggest essential modifications
of the traditional PB theory: (i) Water confined in nanometer
slabs exhibits dielectric properties distinctly different from
bulk.26−29 This is also suggested by a modified interfacial water
structure inferred from nonlinear spectroscopy.30−32 (ii)
Surface charge distributions are neither laterally homogeneous
nor sharply peaked normal to the surface, as typically assumed
in PB modeling, but rather are discrete33 and broadly
distributed.26 (iii) Ions interact with charged as well as
uncharged surface groups via ion-surface interactions which
involve surface-induced partial ion dehydration34,35 and lead to
ion-specific Hofmeister effects36 and modifications of surface
interactions.14,37 (iv) Finally, ion correlation effects, not
included in PB theory, become relevant for highly charged
surfaces and high ion valency, and make similarly charged walls
attract each other,38 in strong contrast to the mean-field PB
predictions.
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Water-explicit simulations of charged surfaces in principle
include all these effects and should thus allow for a crucial test
of the assumption of additive hydration and PB pressures, in
particular since the surface charge and its location are precisely
known. Previous simulations reported ion density profiles
between nanometer-separated charged surfaces.10−14,26 How-
ever, technical difficulties to impose a constant water chemical
potential, which is the experimentally realized ensemble,
precluded so far the quantitative comparison of surface
pressures from water-explicit simulations with theoretical
predictions.
In our simulations, we fix the water chemical potential by the

thermodynamic extrapolation method,39,40 which we previ-
ously introduced for the study of the hydration repulsion
between neutral lipid membranes,39 and compare simulated
pressures between charged surfaces in the presence of
monovalent counterions with theoretical predictions. For this
we introduce a modified PB (MPB) theory that includes a
general ion-surface interaction potential, an inhomogeneous
dielectric profile and a surface charge distribution that is
smeared-out in the direction normal to the surface. For low
surface charge density we demonstrate that the simulated total
pressure is very accurately described by the sum of the MPB
pressure and the hydration pressure, the latter being extracted
from corresponding simulations between uncharged surfaces.
But already for a moderate surface charge density of σ = −0.77
e/nm2, this additive description breaks down. Monte Carlo
simulations of corresponding water-implicit model systems
suggest the deviations between water-explicit simulations and
MPB theory to be only partly due to ion correlation effects. By
analysis of the water orientation profile, which is significantly
perturbed by the presence of surface charges, the breakdown of
the additivity assumption is suggested to be also due to a
change of the effective water dielectric constant in confinement
and presumably also due to a modification of the effective
hydration pressure. In contrast to the interaction pressures, the
counterion density profiles are for all studied surface charge
densities well described by the MPB theory. Our study
suggests that water structural effects are crucial for the
quantitative modeling of the interaction between charged
surfaces at the nanoscale, while MPB theory with suitably
defined ion−surface interactions quantitatively describes ion-

density profiles. This is important for the correct interpretation
of experimental results for ion density profiles and interaction
pressures between charged surfaces.

■ METHODS
Simulation Model. Our model surfaces consist of decanol

bilayers with variable charges added to the head groups. Similar to
experimental self-assembled monolayers (SAMs) on gold substrates,
we fix the molecules on a centered rectangular lattice at a tilt angle of
30°; see Figure 1a for a snapshot. Two different lateral areas A = Lx ×
Ly with Nd = 100 or 196 decanols per monolayer are studied; see
Table 1 for parameters. The water number in the NwALzT ensemble

at constant temperature T = 300 K is adjusted for each box height Lz
such that the water chemical potential μw equals the bulk value μb =
(−48.25 ± 0.02) kJ/mol, determined such that at large separations
the pressure is zero within the error bars; see the Supporting
Information for details. For an accurate interaction pressure Π, the
error in μw has to be below 0.01kBT, requiring at least 6 μs simulation
time per data point. Force-field parameters are based on
GROMOS53A641 where the decanol hydroxyl groups are represented
in atomistic detail, and CH2 and CH3 groups as united atoms. The
SPC/E water model is employed,42 and Na+ parameters are taken
from ref 43. The repulsion between headgroup oxygens is increased to
reduce intrasurface hydrogen bonding.44 We consider counterions
only so that the ion number Nion is determined by total charge
neutrality. All simulations are performed using version 5.0 of the
GROMACS simulation package45 with periodic boundary conditions.
Lennard−Jones interactions are truncated and shifted at rc = 0.9 nm;
for the electrostatic interactions, the particle mesh Ewald method46 is
employed. As shown in the united atom representation of decanol in
Figure 1b, a negative charge of up to δ = −0.18 is evenly distributed

Figure 1. (a) Simulation snapshot for surface charge density σ = −0.77 e/nm2 with Nion = 18 Na+ ions and box height Lz = 4.05 nm, leading to a
surface separation d = 1.5 nm. Water molecules are not shown in the central box. (b) Partial charge distribution on a decanol headgroup with a net
charge δ. (c) Interaction pressure between neutral decanol surfaces for Nd = 100 (circles) and Nd = 196 decanols per surface (crosses). The dashed
line is a fit of eq 6 to all positive pressure data yielding a decay length λ = 0.10 nm. In the large distance regime, in the inset, the pressure is zero
within numerical accuracy. Triangles denote results for the equivalent osmotic pressure Π = Π0 + (μb−μw)/vwb in the alternative NwAΠ0T ensemble
for fixed Π0 = 1 bar; the see Supporting Information for details.

Table 1. Simulation Parameters for Neutral and Charged
Surfacesa

δ σ [e/nm2] Ξ Nion Lx × Ly [nm
2] Nd

0 0 4.83 × 4.83 100
0 0 6.77 × 6.77 196
−0.0255 −0.109 0.43 10 6.77 × 6.77 196
−0.09 −0.385 1.53 18 4.83 × 4.83 100
−0.18 −0.770 3.06 36 4.83 × 4.83 100

aThe coupling parameter Ξ is calculated using the SPC/E bulk
dielectric constant εb = 70.28
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over the three COH headgroup atoms, producing surface charge
densities up to σ = −0.77 e/nm2. Such a homogeneous surface charge
distribution prevents specific ion binding and can experimentally be
realized by potentiometric SAM setups.47−52 The electrostatic
coupling parameter in Table 1, defined by Ξ = 2πq3lB

2|σ|/e with the
Bjerrum length lB = e2/(4πε0εbkBT), is rather small and in a range
where deviations from PB theory are moderate;53 see Results and
Discussion. Our choice of a polar surface ensures that even for
vanishing net charge the water slab is stable. For further simulation
details, see the Supporting Information.
Definition of Surface Charge Position. When comparing

simulations or experiments with PB models the surface charge
distribution is important. Figure 2 (a) shows water and decanol

oxygen density profiles for neutral and charged surfaces. Water density
oscillations are absent since the surfaces are relatively soft.44,54 The
surface separation d is defined as the mean distance between decanol
oxygen atoms in opposing layers. In Figure 2b, we show the decanol
charge density profile ρsurf(z), which for the neutral surface (solid
black line) reveals a pronounced orientation of the OH headgroups.
With decreasing net surface charge density σ = ∫ 0

Lz/2 dz ρsurf(z), the
surface charge profile shifts downward. The plot of the excess surface
charge profile Δρsurf(z) = ρsurf(z)|σ − ρsurf(z)|σ=0 in Figure 2c
demonstrates that d equals the distance between the excess charge
extrema quite accurately, we therefore use d to characterize the
surface charge position whenever needed.
Modified PB Theory. The normal electric E⊥(z) and displace-

ment fields D⊥(z) are related by the nonlocal inverse perpendicular
dielectric function εnl,⊥

−1 according to

E z z z z D z( ) d ( , ) ( )0
1

nl,
1∫ε ε= ′ ′ ′⊥

−
⊥

−
⊥ (1)

where we used lateral homogeneity and averaged over the xy
coordinates. For slowly varying D⊥(z) (i.e., for low σ), a systematic
gradient expansion yields to leading order

E z z D z( ) ( ) ( )0
1 1ε ε=⊥

−
⊥

−
⊥ (2)

with the dielectric profile defined as ε⊥
−1(z) = ∫ dz′εnl,⊥−1(z, z′).

Defining the electrostatic potential Ψ(z) by dΨ(z)/dz = −E⊥(z), the
PB mean-field counterion density distribution reads

z q c( ) e e q z U z k T
ion 0

e ( ) ( ) / Bρ = −[ Ψ + ]
(3)

where q = 1 is the counterion valence and the potential U(z) accounts
for interfacial effects not included in the electrostatic potential Ψ(z).
The factor c0 ensures that the total charge is zero,
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. The displacement field is due to the sum

of ion and surface charges according to

D z
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(4)

Combining the derivative of eq 2 with eqs 3 and 4 results in the
integro-differential MPB equation55−57 which is numerically solved
(see Supporting Information).

Monte Carlo Simulations. In order to assess the validity of the
mean field PB model to predict the interaction pressures, we perform
canonical Monte Carlo (MC) simulations of Nion = 50 point-like
monovalent counterions in a box of lateral size L, which is determined

by electroneutrality, L N /(2 )ion σ= | | . The counterions are confined
between two surfaces located at z = 0 and z = d. The electrostatic
energy is obtained using a generalized efficient 3D Ewald summation
method with correction for slab geometry.58 In this method, an empty
layer which is 3 times thicker than the wall separation59 is present in
the region d < z < 4d. After 1 × 106 MC steps for equilibration, we
save 1 × 106 uncorrelated counterion configurations every 1000 MC
steps for further analysis.

■ RESULTS AND DISCUSSION
Ion Density Profiles. The simulated ion density profiles

for different surface charge densities σ and different separations
d are shown as blue lines in Figure 3. The predictions from
standard PB theory, using a constant bulk dielectric profile
ε⊥

−1(z) = εb
−1, vanishing ion-surface interactions U(z) = 0 and

sharply localized surface charges ρsurf(z) = δ(|z| − d/2)σ, are
shown as dashed black lines (see the Supporting Information
for details). For the lowest surface charge σ = −0.11 e/nm2 and
large separation d = 6 nm in Figure 3 (c) the two profiles agree
well apart from the interfacial region. However, for the smaller
separations in Figure 3 (a) and (b) the standard PB model
obviously fails.
We now turn to the MPB that features an exponential

repulsive ion-surface interaction of the form

i
k
jjjj

y
{
zzzz

i
k
jjjj

y
{
zzzzU z a

z d
a

z d
( ) exp

/2
exp

/2
ξ ξ

= − + − −
(5)

The decay length ξ = (0.16 ± 0.01) nm and the potential
strength a/(kBT) = 2.6 ± 0.1 are obtained from a fit of the
MPB predictions to the simulation data for d > 1 nm at σ =
−0.11 e/nm2; see the Supporting Information. Using the same
U(z) for all surface separations with ε⊥

−1(z) = εb
−1 and sharply

localized surface charges, the MPB results shown by dashed
red lines in Figure 3 describe the simulation data well for all
separations and surface charges.

Figure 2. (a) Mass density distribution ρm of water (solid lines) and
decanol oxygens (dashed lines) for different surface charges σ at fixed
box height Lz = 4.05 nm. Vertical lines denote the surface position
given by the separation d = 1.51 nm which follows from the mean
decanol oxygen separation and differs by less than 0.02 nm for
different σ. (b) Decanol charge density distribution ρsurf(z). (c)
Excess surface charge density distribution Δρsurf(z).
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The MPB that additionally includes the surface charge
distribution ρsurf(z) extracted from simulations, shown as
dashed-dotted black lines in Figure 3, does not significantly
change the results, as we demonstrate for selected distances
and surface charges by dotted green lines in Figure 4. This is
not surprising since ρsurf(z) is peaked in the region where the
surface repulsion U(z) is large.
We now check the influence of a dielectric profile ε⊥

−1(z),
which we extract from polarization fluctuations for uncharged
surfaces;28 see the Supporting Information for details. The
MPB solution including the previously determined ion-surface
potential U(z), the surface charge distribution ρsurf(z), and the
dielectric profile ε⊥

−1(z) is shown as orange dashed-dotted
lines in Figure 4. For small surface charge and large separation
in Figure 4a, where linear dielectric theory is expected to be
reliable, the influence of the dielectric profile on the predicted
ion density is negligible; for the high surface charge densities in
Figure 4b and c, for which we show below that linear dielectric
theory is not expected to work, including ε⊥

−1(z) does not
improve the agreement with the simulation data. We checked
the robustness of our fitting procedure for U(z) by an
alternative procedure where we determine the parameters of eq
5 in the presence of the ρsurf(z) and ε⊥

−1(z) profiles; see the
Supporting Information. From this alternative fit, we obtain

modified parameters a*/(kBT) = 3.8 ± 0.1 and ξ* = (0.13 ±
0.01) nm. However, the agreement between the MPB and
simulation counterion density profiles shown in Figures S4 and
S5 does not improve and at small separation and surface
charges the deviations are even stronger; see Figure S4a. In
particular, as we show in Figure S4g−i, taking into account the
ε⊥

−1(z) profiles drastically overestimates the ion density close
to the surface for σ = −0.77 e/nm2, in contrast to the MPB
curves shown in Figure 3g−i. This is not surprising, since linear
dielectric theory is not expected to work for these high surface
charges as we argue further below. In conclusion, the MPB
theory which only includes the ion-surface potential U(z)
reproduces the simulated ion density profiles very well, while
additional effects due to dielectric effects and surface charge
distributions are negligible.

Interaction pressure. The simulated interaction pressure
between charge-neutral polar surfaces in Figure 1c decays
exponentially according to

e d
hyd

/Π = Π* λ−
(6)

with a decay length λ = 0.10 nm, and corresponds to the
hydration repulsion.28,40,44,60 The simulated pressures for finite
surface charges are shown in Figure 5 (blue diamonds)

Figure 3. Simulation results for the ion density profiles ρion(z) (solid blue lines) for different surface separations d (columns) and surface charge
densities σ (rows). Dashed black lines show the standard PB prediction with the surface charge positions indicated by vertical dashed lines at ±d/2,
and red dashed lines the MPB predictions including an ion-surface repulsion U(z) according to eq 5. Dashed-dotted black lines show the surface-
charge profiles ρsurf(z) (right axis). Results highlighted by red boxes are discussed in more detail in Figure 4.

Figure 4. Simulation results for the ion density profiles ρion(z) (solid blue lines) for a few selected values of d and σ compared with MPB
predictions including only the ion−surface interaction U(z) (red broken lines), U(z) and the surface charge distribution ρsurf(z) (green dotted
lines), U(z), ρsurf(z), and the dielectric profile ε⊥

−1(z) (orange dashed-dotted lines). Vertical dashed lines indicate the mean surface-charge
positions ±d/2.
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together with the neutral-surface result (black spheres). For
small separations, the simulated pressures for finite surface
charge agree perfectly with the hydration pressure between
neutral surfaces, confirming one essential assumption made in
the description of experimental data.
The MPB pressure follows from the free energy

d
Ak T k T

z z z

c z c z z

U z c z z
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by differentiation, d d A d( ) ( )/( )MPB MPBΠ = −∂ ∂ . The first
term in eq 7 is the electrostatic energy, the second accounts for
the counterion entropy, and the third results from ion−surface
interactions, where c(z) = ρion(z)/(qe) is the ion number
density, see Supporting Information.
In Figure 5, we compare the simulated pressure to the sum

of hydration and MPB pressures (red lines) and the sum of
hydration and standard PB pressures (green broken lines). At
low surface charge σ = −0.11 e/nm2 in Figure 5a, the
simulation data is excellently described by Πhyd + ΠMPB. The
ion−surface repulsion U(z) makes the MPB pressure slightly
more repulsive compared to standard PB theory, but this
difference is rather small, which is noteworthy in light of the
pronounced differences between the MPB and PB ion density
profiles in Figure 3a−c. This reflects that the PB pressure for

these small surface separations is essentially entropic and due
to ion confinement; see the Supporting Information for details.
The simulated pressures for σ = −0.39 e/nm2 in Figure 5b are
slightly smaller than Πhyd + ΠMPB; for σ = −0.77 e/nm2 in
Figure 5c and d, they are significantly smaller. These
simulation results can in fact be explained by ion-correlation
effects, which invalidate the mean-field approximation inherent
to the MPB model, as we demonstrate below by Monte Carlo
(MC) simulations of counterions in a homogeneous dielectric
medium between planar charged walls with the same surface
charge densities as employed in the MD simulations, if we take
the modification of the water dielectric constant due to the
surface-charge induced water orientation into account. This
suggests that the additivity assumption of hydration and mean-
field MPB repulsive pressures, with the hydration pressure
corresponding to the pressure acting between charge net-
neutral surfaces and which is assumed to solely account for the
surface-induced water structure modification, breaks down
already for moderate surface charge densities.

Water Uptake. To emphasize the importance of a precise
control of the water chemical potential in atomistic simulations
of charged surfaces, we report in Figure 6a the surface-charge
induced rescaled water number change in the slab at given
separation d, ΔNw/Nw

0 = (Nw − Nw
0)/Nw

0 , where Nw
0 denotes

the water number present between uncharged polar surfaces.
As seen in Figure 6a, ΔNw/Nw

0 for constant water chemical
potential is for large surface separation d and large surface
charge density significantly positive. This water uptake has
drastic consequences for the interaction pressure, as shown in
Figure 6b. If the water number is fixed to Nw

0 , corresponding to

Figure 5. Simulated interaction pressures (blue diamonds) for three different surface charge densities σ are compared with results for uncharged
surfaces (black circles, including the exponential fit Πhyd(z), eq 6, from Figure 1c as a broken black line) and the additive predictions Πhyd + ΠMPB
(red lines) and Πhyd + ΠPB (green lines). The plot in (d) shows the same data as in (c) on a linear scale. In (c) and (d), we also include the additive
prediction Πhyd + ΠMC from Monte Carlo simulations for coupling parameters Ξ = 3.06 (purple pentagons) and Ξ = 20 (brown squares).
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the water number between uncharged surfaces, the interaction
pressures are strongly attractive at large separations (circles).
In contrast, if the water chemical potential is kept constant at
the bulk value, thus allowing for water uptake (triangles), the
pressures decay to zero at large separations and are generally
larger by about 200 bar. Thus, the quantitative analysis of
simulation pressures in Figure 5 only makes sense if the
chemical potential is precisely controlled.
We note that the finite water uptake ΔNw also influences the

analysis of experimental pressure−distance curves, where often
the equivalent water slab thickness dw = Nwvw/A, which is
proportional to the number of water molecules, is reported and
used as a proxy for the surface separation.17 A comparison of
the simulated pressures for different surface charge densities
when plotted as a function of the geometric surface separation
d in Figure 6c reveals that the short-range pressure between

charged surfaces, fitted to exponential functions denoted by
colored dashed lines, does not change significantly compared
to the uncharged surface pressure (black dashed line).
However, when using the equivalent water slab thickness dw
as the surface separation in Figure 6d, the amplitude of the
repulsion at small distances acquires a spurious dependence on
the surface charge. This adds an additional complication to the
analysis of experimental pressure−distance data of charged
systems, since as we show here, the definition of the surface
separation will not only influence the fit value of the effective
surface charge but also the fit values of the hydration repulsion
amplitude.

Water Orientation at Charged Interfaces. The
hydration repulsion is in literature typically attributed to
surface-induced water orientation effects.61−63 In Figure 7 we
show profiles of the cosine of the orientation angle Θ between

Figure 6. (a) Relative water uptake ΔNw/Nw
0 compared to the uncharged system for different surface charge densities σ = −0.11, − 0.39, and

−0.77 e/nm2 (blue, red and green data, respectively). (b) Interaction pressure at fixed water number Nw
0 corresponding to the uncharged system

(circles) and at fixed bulk water chemical potential (triangles). Lines serve as guide to the eye. For clarity, the data is shifted by 500 bar for σ =
−0.39 e/nm2 and 1000 bar for σ = −0.77 e/nm2, respectively, indicated by the dashed black lines to the right. (c) Interaction pressure at fixed bulk
water chemical potential for the neutral and charged surfaces as a function of the geometric water slab thickness d. Dashed lines denote exponential
fits to the simulation data. (d) Same data as in (c) but now plotted as a function of the equivalent water slab thickness dw = Nwvw/A.

Figure 7. Water orientation profiles cos(Θ) for different surface charge densities σ at surface separation (a) d = 0.6 nm, (b) 1.2 nm, and (c) 6 nm.
For clarity in (c), only the left half-space is shown.
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water dipoles and the surface normal for different surface
separations. For neutral surfaces, σ = 0, and at large separation,
d = 6 nm, shown in Figure 7c, cos(Θ) > 0, meaning that
interfacial water molecules point with their oxygens toward the
decanols due to favorable hydrogen-bonding interactions with
the surface hydrogens (solid black line), further away from the
interface the average orientation quickly decays to zero. In
strong confinement, Figure 7a, the water orientation profile is
strongly perturbed compared to the free interface; this is one
contribution to the hydration repulsion. For weak surface
charge σ = −0.11 e/nm2, the orientation profile is not
drastically changed compared to σ = 0, which explains the
observed additivity of hydration and MPB pressures in Figure
5a. For elevated surface charges σ = −0.38 and −0.77 e/nm2,
the water orientation changes profoundly and water hydrogens
point to the surface due to the negative surface charge, in
agreement with previous experiments and simula-
tions.30−32,64,65 This suggests that the failure of the pressure
additivity assumption for σ = −0.77 e/nm2 in Figure 5c could
partly result from a modification of the hydration force due to
surface-charge induced water reorientation. We discuss the
influence of ion correlation effects, which are not captured by
PB theory, below and show that they give rise to substantial
modifications of the interaction pressure if the confinement-
induced decrease of the water dielectric constant is accounted
for.
Corrections to PB Theory. The PB theory describes the

pressure between charged surfaces correctly for small coupling
parameter Ξ = 2πlB

2q3|σ|/e < 1, that means for low surface
charge density σ and ions with low valency q.66 Note that for
very small surface separation d the mean-field approximation
used in deriving PB theory breaks down even for small values
of Ξ, this however does not invalidate the pressure predicted
by PB since it is predominantly due to the counterion
confinement pressure.66 For the three surface charge densities
considered in this work, Ξ < 1 is strictly fulfilled only for σ =
−0.11 e/nm2; see Table 1.
To check whether the breakdown of PB theory could be the

cause of the deviations between the pressures from MD
simulations and the MPB predictions in Figure 5c and d, we
compare in Figure 8a pressures from PB theory (solid lines)
with water-implicit Monte Carlo simulations of point-like

monovalent counterions between homogeneously charged
plates (data points). This comparison allows one to exclusively
judge the effect of counterion correlations on the pressure
without complications due to nonelectrostatic ion−surface
interactions, smeared-out surface charge distributions, and
dielectric and hydration effects, which are all present in the
MD simulations. The surface charge densities used in Figure 8a
correspond exactly to the ones in the MD simulations. As
expected, the agreement between PB theory and simulations is
nearly perfect for the lowest surface charge, i.e., coupling
parameter Ξ = 0.43, whereas for the system with the highest
surface charge, Ξ = 3.06, deviations are significant. However,
the reduction of the surface pressure by about 30% for Ξ =
3.06 observed in Figure 8a is not large enough to fully explain
the pressure reduction seen in the MD simulations compared
to the MPB + hydration pressure prediction; this is
demonstrated in Figure 5c and d by the purple pentagons
which represent the sum of the hydration pressure and the MC
simulation result for Ξ = 3.06.
In fact, even more enhanced deviations from PB are

expected since the dielectric constant of water in planar
confinement decreases,28 which would further increase the
coupling parameter since it scales with the inverse square of
the dielectric constant, i.e., Ξ ∼ 1/ε2. In the inset of Figure 8a,
we show the rescaled pressure Π̃ = Π/(2πkBTlBσ2/e2) versus
the rescaled distance d̃ = d/b, where b = 1/(2πqlB|σ|/e) is the
Gouy−Chapman length. It is seen that for large coupling
parameters the pressure decreases and around Ξ = 20 becomes
attractive in an intermediate distance range. The perpendicular
dielectric constant of water confined between neutral polar
surfaces has been demonstrated to decrease for surface
separations below d ≈ 0.7 nm from the SPC/E bulk value of
ε⊥ ≈ 70 down to values of ε⊥ ≈ 10 at d ≈ 0.3 nm, which
indeed would suggest a massively increased effective coupling
parameter for small surface separations. To make a conclusive
prediction for the effective coupling parameter Ξ that describes
our MD simulations of charged surfaces, one would need to
derive the effective water dielectric constant in the presence of
surface charges and counterions, which is nontrivial even in
bulk electrolytes.68 As a test, we present in Figure 5d by brown
squares the sum of the hydration pressure and the MC
simulation pressure for Ξ = 20, which matches the MD

Figure 8. (a) Comparison of interaction pressures from Monte Carlo simulations of point-like counterions between homogeneously charged
surfaces (data points) and PB theory (solid lines) for the parameters considered in the MD simulations. The inset shows MC simulation results,
including additional results for Ξ = 5, Ξ = 20, and Ξ = 100, in rescaled units Π̃ = Π/(kBT2πlBσ2) and d̃ = d/b (data for Ξ = 5 and Ξ = 20 are taken
from ref 67). Solid line shows the PB prediction, and dashed line denotes the strong coupling prediction66 valid in the limit Ξ → ∞. (b) Scaling
diagram of the surface charge density range where PB theory is expected to be valid as a function of the dielectric constant for monovalent, divalent
and trivalent counterions (at room temperature).
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pressure quite nicely. This comparison suggests that the
change of the dielectric constant, caused by the surface-
induced water structure perturbation, is in strong confinement
sufficient to significantly increase the effective electrostatic
coupling parameter and thereby to invalidate the mean-field
PB prediction for the pressure. The perturbation on the
counterion density profiles is expected to be less severe since it
is dominated by surface−ion interactions, which enter the PB
and the strong-coupling description (valid for high coupling
parameters) in a similar fashion.
We present the criterion for the applicability of PB theory, Ξ

< 1, in Figure 8b as a function of the dielectric constant for
monovalent, divalent, and trivalent counterions. For the SPC/
E bulk dielectric constant ε = 70 and q = 1, we find a threshold
surface charge density of |σ| = 0.25 e/nm2, for the experimental
value ε = 80, one obtains the slightly increased value |σ| = 0.33
e/nm2. For a reduced dielectric constant, which should apply
to water in strong confinement, the threshold surface charge
density decreases and deviations from PB theory are expected
for a wider range of surface charge densities. Clearly, for
divalent and trivalent counterions the threshold surface charge
density is further decreased.

■ SUMMARY AND CONCLUSIONS

Our water-explicit simulations at fixed water chemical potential
show that monovalent counterion density profiles at soft
charged surfaces are well described by a modified Poisson−
Boltzmann (MPB) approach that includes nonelectrostatic
ion−surface interactions. The effects of dielectric profiles and
smeared-out surface charge distributions on the counterion
density profiles are less important. At low surface charge
densities, our simulations confirm the additivity of the
hydration repulsion (extracted from simulations of uncharged
surfaces) and the surface-charge induced MPB pressure
contributions down to sub-nanometer surface separations.
However, already for a moderate surface charge density σ =
−0.77e/nm2, this additivity breaks down, which we rationalize
by the combined effects of a counterion-correlation induced
modification of the MPB predictions (presumably enhanced by
a decrease of the water dielectric constant in confinement) and
a modification of the hydration repulsion due to the surface-
charge induced reorientation of interfacial water. Corrections
to PB theory due to ion correlation effects, which have been
extensively discussed,38 can thus even for moderate surface
charge densities and monovalent counterions become relevant.
That interfacial water reacts sensitively to the presence of
surface charges is known from simulations and experi-
ments,30−32,64,65 and we suggest that this restructuring
modifies the surface interaction pressure between charged
surfaces significantly.

■ ASSOCIATED CONTENT

*S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acs.lang-
muir.8b03474.

Further simulation details including the control of the
water chemical potential, dielectric profiles, details on
the MPB including a free energy decomposition and the
analytical solution of the PB equation between planar
walls (PDF)

■ AUTHOR INFORMATION
Corresponding Authors
*E-mail: alexander.schlaich@univ-grenoble-alpes.fr.
*E-mail: rnetz@physik.fu-berlin.de.
ORCID
Alexander Schlaich: 0000-0002-4250-363X
Author Contributions
A.S. and R.R.N. designed the research project; A.S. and
A.P.d.S. performed simulations; A.S., A.P.d.S., and R.R.N.
analyzed the data; A.S. and R.R.N. wrote the manuscript.
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
This work was supported by the European Innovative Training
Network “Transport of Soft Matter at the Nanoscale”
(NANOTRANS). A.P.d.S acknowledges funding from the
Alexander von Humboldt Foundation through the CAPES
program.

■ REFERENCES
(1) Suetsugu, S.; Kurisu, S.; Takenawa, T. Dynamic Shaping of
Cellular Membranes by Phospholipids and Membrane-Deforming
Proteins. Physiol. Rev. 2014, 94, 1219−1248.
(2) Leventis, P. A.; Grinstein, S. The Distribution and Function of
Phosphatidylserine in Cellular Membranes. Annu. Rev. Biophys. 2010,
39, 407−427.
(3) Di Paolo, G.; De Camilli, P. Phosphoinositides in cell regulation
and membrane dynamics. Nature 2006, 443, 651−657.
(4) Smulders, E.; von Rybinski, W.; Sung, E.; Raḧse, W.; Steber, J.;
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Nanofluidics has emerged recently in the footsteps of microfluidics, following the quest for scale

reduction inherent to nanotechnologies. By definition, nanofluidics explores transport phenomena

of fluids at nanometer scales. Why is the nanometer scale specific? What fluid properties are

probed at nanometric scales? In other words, why does ‘nanofluidics’ deserve its own brand

name? In this critical review, we will explore the vast manifold of length scales emerging for fluid

behavior at the nanoscale, as well as the associated mechanisms and corresponding applications.

We will in particular explore the interplay between bulk and interface phenomena. The limit of

validity of the continuum approaches will be discussed, as well as the numerous surface induced

effects occurring at these scales, from hydrodynamic slippage to the various electro-kinetic

phenomena originating from the couplings between hydrodynamics and electrostatics.

An enlightening analogy between ion transport in nanochannels and transport in doped

semi-conductors will be discussed (156 references).

I. Nanofluidics, surrounding the frame

Nanofluidics, the study of fluidic transport at nanometer
scales, has emerged quite recently in the footsteps of micro-
fluidics. Pushing the limits of fluidic downsizing further is an
attractive goal, in the spirit of scale reduction inherent to all
micro- and nano-technologies. Various reasons may be seen to
motivate these novel developments. First, from the point of
view of biotechnological (‘‘lab on a chip’’) applications,
decreasing the scales considerably increases the sensitivity of
analytic techniques, with the ultimate goal of isolating and
studying individual macromolecules.1,2 But also, from the
point of view of fluidic operations, nanometric scales allow
new fluidic functionalities to be developed, using the explicit

benefit of the predominance of surfaces. Typical examples
involve preconcentration phenomena,3 the development of
nanofluidic transistors4,5 or the recently proposed nanofluidic
diodes.6,7 But the analogy to micro-electronics is somewhat
limited: fluid molecules are not electrons and the notion of
large scale integration for fluidic devices, i.e. nanofluidics as a
way of increasing the density of fluidic operations on a chip
even further, is probably not a pertinent goal to reach for
fluidic operations.
But from a different perspective, nanofluidics also carries

the hope that new properties will emerge by benefiting from
the specific phenomena occurring at the smallest scales: new
solutions may be obtained from the scales where the behavior
of matter departs from common expectations. The great
efficiency of biological nanopores (in terms of permeability
or selectivity) is definitely a great motivation to foster research
in this direction.8,9 There is indeed a lot of room for improvement
at these smallest scales: the example of aquaporins (AQP) is
interesting in this context. Aquaporin channels are a key
component of many biological processes10 and play the role
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Nanostructures, Université Lyon 1 and CNRS, UMR 5586,
43 Bvd. du 11 Nov. 1918, 69622 Villeurbanne Cedex, France.
E-mail: lyderic.bocquet@univ-lyon1.fr
w Part of the themed issue: From microfluidic application to nano-
fluidic phenomena.

Lydéric Bocquet

Prof. Lydéric Bocquet is head
of the ‘‘Liquids at Interfaces’’
research group in the
condensed matter laboratory
of the University of Lyon.
His interests—mainly curiosity
driven—extend to domains
where fluid dynamics connect
to surface science. He combines
theory, experiments and
simulations to explore the in-
timate mechanisms of surface
phenomena at the molecular
level.

Elisabeth Charlaix

Elisabeth Charlaix is professor
at the University of Lyon 1.
She runs a research group
on surface forces, and the
behavior of liquids at the
smallest scales. Her field of
interest ranges from transport
in porous materials, granular
materials, to nanofluidics and
bio-lubrication.

This journal is !c The Royal Society of Chemistry 2010 Chem. Soc. Rev., 2010, 39, 1073–1095 | 1073

CRITICAL REVIEW www.rsc.org/csr | Chemical Society Reviews



of water filters across biological membranes. These channels
fulfill the conflicting tasks of being both extremely permeable
to water, while extremely selective for other species.8 To give
an order of magnitude, the permeability of the water channel is
typically 3 orders of magnitude larger than what would be
expected on the basis of the classical fluid framework for the
same pore size.11,12 A potential answer is that AQP, although a
filter for water, is mainly hydrophobic, i.e. water repellent! Of
course some hydrophilic polar nodes are distributed along the
pore, so as to keep water in the mainly hydrophobic environment.
Quoting the terms of Sui et al. in ref. 8, ‘‘the availability of
water-binding sites at these nodes reduces the energy barrier to
water transport across this predominantly hydrophobic pathway,
while the relatively low number of such sites keeps the degree
of solute–pore interaction to a minimum. In balancing these
opposing factors the aquaporins are able to transport water
selectively while optimizing permeability.’’ Beyond this elementary
picture, understanding how AQP fulfills its challenging
properties would definitely be a source of inspiration and
open new perspectives for technological breakthrough
in filtration, desalination, power conversion,. . . However
reproducing such a delicate composite (patched) architecture
in bio-mimetic membranes is a great challenge, which requires
breakthrough in the conception of its elementary constituents.
But it points out that surfaces and their chemical engineering
are key to optimizing fluid properties at the nano-scale.

However, in its roots, nanofluidics is not a new field: as
judiciously recalled by Eijkel and van den Berg in their
pioneering review on the subject,1 many ‘old’ fields of physics,
chemistry and biology already involve the behavior of fluids at
the nanoscale. Like Monsieur Jourdain in ‘‘Le bourgeois
gentilhomme’’ by Molière, one has done ‘nanofluidics’ for
more than forty years without knowing it.154 One may cite for
example the domains of electro-kinetics (electro-osmosis or
-phoresis,. . .) with applications in chemistry and soil science,
membrane science (ultra-filtration, reverse osmosis, fuel
cells,. . .), colloid chemistry, and of course physiology and
the study of biological channels.1 An interesting question is
accordingly whether—on the basis of the novel ‘nanofluidic’
point of view—one may go beyond the traditional knowledge
in those ‘old’ fields and obtain unforeseen results, e.g. allowing
for better optimization of existing technologies? Our belief is
that the answer to this question is already positive and this is
one of the key aspects that we shall discuss in this review.

Finally it is also important to note that nanofluidics has
emerged recently as a scientific field (i.e. naming a field as
‘‘nanofluidics’’) also because of the considerable progress
made over the last two decades in developing nano-fabrication
technologies, now allowing specifically designed nanofluidic
devices to be fabricated, as well as the great development of
new instruments and tools which give the possibility of
investigating fluid behavior at the nanometer scale. One may
cite for example: new electrical detection techniques, Surface
Force Apparatus (SFA), Atomic Force Microscopy (AFM),
nano-Particle Image Velocimetry (nano-PIV) coupling PIV to
TIRF set-up (Total Internal Reflection Fluorescence), as
well as the considerable progress made in computational
techniques, like Molecular Dynamics simulations. It is now
possible to control/design what is occuring at these scales, and

observe/measure its effects. This is the novelty of the field, and
the reason why nanofluidics now deserves its own terminology.
The paper is organized as follows: In the second section we

will replace nanofluidics in the perspective of the various
length scales at play in fluid dynamics. We shall in particular
discuss the limits of validity of continuum (e.g. hydrodynamic)
descriptions. In the third section we discuss the dynamics of
fluids at interfaces and the nanofluidic tools which have been
developed recently to investigate it. In the fourth section we
will explore various transport phenomena occuring in diffuse
layers. In the fifth section we raise the question of thermal
noise in nanofluidic transport. Finally we will conclude by
exploring some general considerations and expectations about
nanofluidics, especially in terms of energy conversion and
desalination.
As a final remark, this review, like any review, is our

subjective and personal view of the field of nanofluidics and
the perspectives one may foresee. We organized our exploration
around the length scales underlying fluid dynamics at the
nanometric scales and how nanofluidics allows us to probe
the corresponding mechanisms. Accordingly, our aim is not to
explore exhaustively the—already large—literature of the
domain, but merely to disentangle the various effects and
length scales underlying the behavior of fluids at nanometer
scales. In doing so, we certainly hope that this review will raise
new questions, open new directions and attract people to this
fascinating domain.

II. Limits of validity of continuum descriptions and
nanofluidic length scales

The introduction of the terminology ‘‘nanofluidics’’ (furthermore
to define a specific scientific field) suggests that something
special should occur for the transport of a fluid when it is
confined in a channel of nanometric size. This leads to an
immediate question: why should the nanometer length scale
have anything specific for fluidic transport? Nanofluidics
‘‘probe’’ the properties of fluids at the nanoscale: so, what
does one probe specifically in the nanometer range?
Actually one may separate two different origins for finite-size

effects associated with nanometer scales: bulk and surface
finite-size effects. The former, bulk effects are intimately
associated with the question of validity of the classical
continuum framework, in particular the Navier–Stokes equations
of hydrodynamics: when do such descriptions break down?
Can one then expect ‘exotic’ fluid effects associated with the
molecular nature of the fluid? On the other hand, surface

Fig. 1 Various length scales at play in nanofluidics.
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effects play an increasingly important role as the ‘‘surface to
volume ratio’’ increases (i.e. as the confinement increases). We
have already pointed out the importance of such effects on the
example of AQP water channels. As we show below, the
surface effects occur at much larger scales than the ‘bulk’
deviations from continuum expectations.

The discussion on the length scales at play, to be explored in
this section, is summarized in Fig. 1.

A Validity of bulk hydrodynamics

We first start with a short discussion on the validity of bulk
hydrodynamics. In practice, this raises the question: when
do the Navier–Stokes (NS) equations break down? These
equations were developed in the 19th century to describe fluid
flows at, say, the human scale. What comes as a surprise is
their incredible robustness when applied to ever smaller scales.

As a fact, for simple liquids, the continuum framework of
hydrodynamics is apparently valid down to the nanometer
scale. In other words, there is no expected deviation to the
bulk NS equations for confinement larger than B1 nm. This
very surprising result is actually suggested by a number of
experimental and molecular simulations studies. On the
experimental side, one may cite the early work by Chan and
Horn13 and later by Georges et al.14 using Surface Force
Apparatus, where the prediction of hydrodynamics (the
Reynolds formula in their case) was verified to be valid for
confinement larger than typically ten molecular diameters.
More recently, and specifically for water, the works by Klein
et al.15 and E. Riedo et al.16 showed that water keeps its bulk
viscosity down to B1–2 nm, with a drastic change of behavior
for stronger confinements, where the wettability of the
confining surface plays a role.16 A similar behavior was
found for other liquids like octamethylcyclotetrasiloxane
(OMCTS).17,18

This threshold for the applicability of continuum hydro-
dynamics was also investigated using Molecular Dynamics
simulations of confined water, and the same value of about
1 nm came out of the simulation results.19–21 Furthermore, it is
interesting to note that beyond the validity of continuum
equations, the value of the viscosity also remains quantita-
tively equal to its bulk value. We show in Fig. 2 the results of
MD simulations for the viscosity Z of water (SPC-E model)
measured in various confinements. The value of the viscosity is
obtained by measuring the shear-stress on the confining plates
for a given shear-rate (corrected for slippage effects). As shown
in this figure, the shear viscosity of water keeps its bulk value
down to confinements of E1 nm (typically 3 water layers).

Now, in contrast to the viscosity, other transport coefficients
may be more strongly affected by confinement. This is the case
for example of the (self-)diffusion coefficient which was shown
to depend algebraically on the confinement width.22,23 As a
consequence, the diffusion coefficient in confinement strongly
departs from its Stokes–Einstein prediction, D = kBT/(3pZs),
with s the molecule diameter. The latter is accordingly not a
correct measure of the viscosity, as sometimes assumed.19,24

Fundamentally the validity of NS equations down to
typically 1 nm (for water) is a priori unexpected. Navier–
Stokes (NS) equations have been developed to account for the

fluid dynamics at ‘large’ scales and they rely on an assumption
of a local and linear relationship between stress and velocity
gradients.
To our knowledge, there is no firmly grounded argument for

this validity and we propose here a few tentative leads. NS
equations, like any continuum framework, rely actually on the
key assumption of a separation of length- and time-scales
between the investigated length scale and the ‘molecular’
dynamics. This is the ‘‘hydrodynamic limit’’, in which the
continuum framework should hold. Under this time- and
length- scale separation, the microscopic dynamics associated
with a huge number of degrees of freedom N E 1023 reduces
to equations with just a few degrees of freedom (velocity field,
pressure, density, temperature, etc.), while all the complexity is
hidden in just a few phenomenological coefficients. Achieving
this averaging out of the ‘‘fast variables’’ is a huge challenge
which can be achieved systematically only in a few limiting
cases, see e.g.ref. 25 for an explicit example. In general, the
elimination of fast variables is summarized in the Green–Kubo
relationship for the transport coefficients: for example the
shear viscosity Z can be expressed as the integral of the
stress–stress correlation function according to

Z ¼ 1

VkBT

Z 1

0
hsxyðtÞsxyð0Þiequ dt ð1Þ

with sxy a non-diagonal component of the stress tensor26 and
h%iequ denotes an equilibrium average.
The time-scale separation underlying the validity of eqn (1)

requires the microscopic time scales, ts, characterizing the
stress–stress correlation function, to be much smaller than a
hydrodynamic time scale. This time scale is e.g. the relaxation
time of momentum, which for a given wave vector q has the
expression tq = (nq2)&1, with n = Z/r the kinematic viscosity
and r the mass density. An implicit condition of validity is
accordingly nq2ts o 1. This fixes the limit for time-scale
separation at confinements w larger than a viscous
length scale:

w4‘c ¼
ffiffiffiffiffiffiffiffiffiffiffi
n % ts

p
ð2Þ

Fig. 2 Viscosity of water versus confinement, as measured from MD

simulations of water confined in a nano-slit made of either two

hydrophilic walls, or one hydrophilic and one hydrophobic wall (janus

confinement) [courtesy of D. Huang].
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Putting numbers for water, a typical correlation time for the
stress–stress correlation function is in the picosecond range
ts B 10&12 s, while n = 10&6 m2 s&1. Altogether this gives
for water

lc E 1 nm (3)

A nanometric characteristic length scale thus emerges naturally
as a lower boundary for the validity of the notion of viscosity,
and thus for the application of standard NS hydrodynamics.
This is indeed the experimental value below which strong
departure from the continuum framework is observed.

Of course, it would be interesting to explore further the
physical contents of this condition: what occurs for smaller
confinements? Also, can one tune lc in specific systems? etc.

In the extreme limit of single file transport, the transport
behavior is indeed expected to strongly deviate from the bulk
expectations, with the predicted occurrence of anomalous
diffusion, and of fast stochastic transport, to cite some
examples.28–30 Apart from biological systems—where molecular
pores are the rule—fabricating channels with molecular size is
however still out of reach with state-of-the-art nanofabrication
technologies.

As a side remark, it would be interesting to extend this
discussion to other transport phenomena, like for example
heat transfer at nanoscales. Heat transfer from nanoparticles
and nanostructures to a fluid is an actively growing field, e.g.
in the context of cooling enhancement by structured surfaces
or local heating of fluids via nanoparticles.27 Similar arguments
as above may be proposed, and lead to an equivalent sub-
nanometer heat length scale (for water at room temperature).
This suggests that the continuum phenomenological picture
for heat transport in fluids, involving Fourier law, is expected
to hold down to nanoscales, in agreement with observations.27

However a full investigation of the limit of applicability of the
corresponding continuum phenomenological laws remain to
be developed in general.

A conclusion of the above discussion is that for most
nanofluidic applications involving water in supra-nanometric
confinements, bulk NS equations can be safely used to account
for the fluid transport.

B A broad spectrum of length scales

Aside from lc introduced above, there are a number of length
scales which enter nanofluidic transport. These length scales
are all related to surface effects in one way or another. We
review in this section a panel of these length scales, climbing
up from the smallest—molecular—scales to the largest, but
still nanometric, scales. This panel is not exhaustive, and we
merely insist on the main length scales which appear generically
in nanofluidic problems. Our aim is to show that there are a
number of pertinent scales which lie indeed in the nanometric
range. This implies that specific nanofluidic phenomena will
show up when the confinement compares with these values.

1. Molecular length scales. At the smallest scales, the
granularity of the fluid and its components (solvent, ions,
dissolved species,. . .) should play a role. This is defined by the
molecular scale, associated with the diameter of the molecules
s, typically in the Angström scale, 3 Å for water. As we

discussed above, this is the scale where the validity of hydro-
dynamics breaks down, typically for confinements of 3–5
molecular diameter. Various phenomena then come into play.
First, the structuring and ordering of the fluid at the confining
walls plays a role. Such ordering was indeed shown experi-
mentally to induce oscillatory dissipation in liquid films with a
width of several molecules diameter.17,18

Similarly non-local rheological properties have been
predicted in strongly confined situations,31 associated with a
length characterizing non-locality typically in a few diameters
range (indeed in line with the above limit of NS hydro-
dynamics). This result echoes recent findings of non-local flow
curves in confined soft glasses.32 An interesting consequence of
non-locality, as pointed out in ref. 32, is that the specific nature
of surfaces does influence the global flow behavior in confinement,
in line with recent observations in AFM measurements by
Riedo et al. for strongly confined water (less than 1 nm) films
at hydrophilic and hydrophobic surfaces.16

But even more drastic are the deviations occurring in the
extreme limit where only one molecule can enter the confining
pore. Very strong correlations and collective motion build up
in the liquid dynamics, leading to the so-called ‘‘single-file’’
transport.33,34 The associated transport differs strongly from
the bulk hydrodynamic predictions and various specific
phenomena show up, like non-fickian transport,34 fast water
transport and ion transfer, stochastic flow with the occurrence
of ‘‘bursts’’, etc., see e.g.ref. 33. Simulations of water transport
through single-file carbon nanotubes (where only one water
molecular can pass through the channel) showed indeed flow
rates much larger than those predicted from the Poiseuille law
of hydrodynamics.28

Note however that this behavior is limited to nanochannels
where molecules cannot cross each other, i.e. with diameters
not exceeding the water molecular length scale, like in bio-
logical channels. Up to now, artificially produced nanochannels
do not reach this limit. This point is interesting to discuss in
the context of recent experimental results obtained for flow
through carbon nanotube membrane.9,35,36 A recent experi-
mental first was achieved in Bakajin’s group, who investigated
the flow through a membrane constituted of carbon nanotube
with a size in the range 1.3–2 nm,9 following the work on
larger nanotubes (B7 nm) by Majumder et al.35 These works
demonstrated massively enhanced flow permeability, as
compared to bulk predictions (in terms of slippage, to be
discussed below, this would correspond to slip lengths up to a
micron, far above any expected result for these surfaces). More
recent experiments performed with membranes made of wider
carbon nanotubes suggest a large, but still smaller, enhancement
of the permeability.36 Therefore, while it would be tempting to
discuss these results in the context of single-file transport and
the predictions by Hummer et al. on fast single-file transport in
sub-nanometer carbon nanotube,33 this point of view is difficult
to justify: as discussed above, fluid flow in nanotube pipes with
a supra-nanometric diameter can be safely described by
continuum approaches (Stokes equation) and the dynamics
is definitely not single file. Molecular Dynamics simulations of
flow through similar carbon nanopipes indeed suggest large
flow enhancement,24,37 but still far below the experimental
results. There is therefore a strong need to perform flow
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experiments through a single object, i.e. through a single
carbon nanotube. This is still an experimental challenge.

Altogether transport at the molecular scale offers a rich
panel of transport behavior. This is definitely the scale where,
as we quoted in the introduction, new solutions and techno-
logical breakthrough could emerge as the behavior of matter
departs from common expectations. This suggests that
the molecular scale would be the ultimate scale to reach
for nanofluidics. But at present, producing channels of sub-
nanometric size remains a technological challenge.

2. Electrostatic length scales and their dynamic influence.
The scales associated with the interaction of the flowing matter
with its environment also enter the game. And of course,
electrostatics plays a key role in this context. We leave aside
interactions deriving indirectly from electrostatics to focus on
the interactions between charged species. These obviously
concern ions dissolved in the fluid: ion–ion interactions, and
interactions of ions with charged surfaces. This also involves
the dipolar interaction among water molecules, as well as
H-bonding.

Electrostatics involves a rich panel of length scales. And
more importantly, due to the long range nature of electro-
statics, these length scales are intimately coupled: effects
occurring at the smallest electrostatic lengths do climb the
scales to span the whole range.

a. Bjerrum length (and some derivatives). We start with the
Bjerrum length, lB, which is defined as the distance at which
the electrostatic interaction Vel between two charged species
becomes of the order of the thermal energy, kBT: Vel(lB) E
kBT. For two ions, with valence Z, embedded in a dielectric
medium with dielectric constant e, this takes the form

‘B ¼ Z2e2

4pekBT
ð4Þ

(e the elementary charge). For bulk water at ambient
temperature and a valency Z = 1, this gives lB = 0.7 nm.
The Bjerrum length therefore compares with the molecular
range in this case. Note however that for multi-valent ions or
for organic solvent with lower dielectric constants, lB may be
much larger and thus separate from the molecular range.

Other length scales could be introduced along the same lines
by comparing thermal energy to e.g. charge–dipole, dipole–
dipole, etc. interactions, taking into account the multi-pole
interaction under consideration. This leads a priori to length
scales smaller than the Bjerrum length introduced above. For
the charge–dipole interaction, this gives for example
‘d ¼ ð‘B p

eÞ
1=2, with p the dipole strength: for water parameters,

ld is in the Angström range. It does correspond to the typical
thickness of a hydration layer around an ion.38

By definition, the Bjerrum length (and other Bjerrum-like
lengths such as ld above) is the scale below which direct
electrostatic interactions dominate over thermal effects. Its
consequences on nanofluidic transport is thus expected at the
molecular scale. For example, for confinement below lB one
expects a large free-energy cost to undress an ion from its
hydration layer and make it enter a molecular pore. This has

therefore immediate consequences on the filtering process of
charged species, as in biological ion channels.
But as pointed out above, a strong interplay with upper

scales is expected due to the long range nature of electrostatic
interactions. For example, as we will discuss in section IV,
ion-specific effects at interfaces, the origin of which occurs
at a scale lB, have strong effects on the electro-kinetics at
nanometric, micrometric and even larger scales.

b. Debye length scale. A central concept of electrostatics is
the notion of the electrostatic diffuse layer (EDL). At a
charged interface, the EDL is the region where the surface
charge is balanced by the cloud of counterions. In this region
the ion concentration profile depart from their bulk values due
to the interaction of ions with the surface charge. This is
therefore the region where local electro-neutrality is not obeyed.
The Debye length emerges naturally from the Poisson–

Boltzmann theory and characterizes the electrostatic screening
in the bulk electrolyte.39 It is defined in terms of the salt
concentration rs according to the expression:

lD = (8plBrs)&1/2 (5)

Note that in this expression, as in the following, rs denotes the
salt concentration in the reservoirs, thereby fixed by the
chemical potential of the ions. The value of the Debye length
depends on the salt concentration and ranges typically
between tens of nanometers (30 nm for rs = 10&4 M) down
to Angströms (3 Å for rs = 1 M). In physical terms, the
electrostatic free-energy of an ion dressed by its spherical
cloud of counterions with size lD is of the order kBT.
The Debye length characterizes the width of the EDL.

Interestingly, it is independent of the surface charge and only
depends on the bulk ion concentration. However, in the
limiting case of a salt free solution (with lD - N), the width
of the diffuse layer is merely fixed by the so-called
Gouy–Chapman length, to be defined in the next paragraph.
The Debye length plays a central role in nanofluidics for

various reasons. First, as quoted above, this is the region in the
fluid close to charged surfaces where local charge electro-
neutrality is broken. Under an applied electric field, this is
thus the region where volume electric forces, fe = reEe, will
apply, with re the charge density and Ee an applied electric
field. On the other hand these forces vanish in the bulk of
the material due to a vanishing charge density re - 0 far from
the surfaces. Therefore tuning the fluid properties inside the
nanometric EDL is expected to affect the whole response of
the system under an electric field. Accordingly, tuning the
dynamics of the fluid in the nanometric EDL, or modifying its
structure, will have a macroscopic impact on the fluid
dynamics at scales much larger than the Debye length. We
will return extensively to this question below, in section IV.B.
Second, a specific behavior is expected when the Debye

layers overlap in a nanopore, which occurs when its size is of
the order of twice the Debye length. This phenomenon has a
strong effect on fluidic transport and has been the object of
intense research recently, as reviewed recently by Schoch et al.,40

see section IV. One may cite in particular the phenomena of
ion enrichment and exclusion.2 While these phenomena were
known for a long while in membrane technology, they found
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new applications in the field of nanofluidics. It is at the root of
a number of novel fluidic phenomena, such as permselectivity,2

nanofluidic diodes6,7 or surface dominated ion transport.41

A key practical aspect is that the condition of Debye layer
overlap is much less stringent to fulfill with actual nano-
fabrication techniques. These are now able to produce individual
nanopores with at least one dimension in the range of ten
nanometers, i.e. potentially suited for Debye layer overlap.

c. Length scales associated with surface charge: Gouy-Chapman
and Dukhin. Other electrostatic length scales may be constructed
on the basis of surface electrostatic properties. We have already
mentioned the Gouy-Chapman length scale, which shows up for
the behavior of a salt solution very close to a charged surface.
For a surface charge density Se, this has an expression
lGC = 1/(2pSlB). In contrast to the Debye length, the Gouy-
Chapman length depends explicitly on the surface density S of
charges of the confining surface (S in units of m&2), but not on
the bulk ion concentration. Physically, the Gouy-Chapman length
can be defined as the distance from the wall where the electrostatic
interaction of a single ion with the wall becomes of the order
of the thermal energy. For typical surface charges, say
Se B 50 mC/m2 (E0.3 e/nm2) to fix ideas, then lGC B 1 nm.
The Gouy-Chapmann length plays a role for solutions with very
small salt concentration. This has an influence on the conductance
in nanochannels as we discuss in section IV C.

More interesting is a length which can be defined on the
basis of the comparison between the bulk to the surface
electric conductance (relating electric current to an applied
electric field). This introduces what can be termed as a
‘‘Dukhin length’’, by analogy to the Dukhin number usually
introduced for colloids.155 Indeed the conduction probes the
number of free carriers (ions), so that in a channel of width h
and surface charge S, the equivalent bulk concentration
of counterions is 2S/h. One may define a Dukhin number
Du = |S|/(hrs), where rs is the concentration of the salt
reservoir.42 A ‘Dukhin length’ can then be defined as

‘Du ¼
jSj
rs

: ð6Þ

To put in numbers, for a surface with a surface charge density
eS B 50 mC/m2 (E0.3 e/nm2), lDu is typically 0.5 nm for
rs = 1 M, while lDu = 5 mm for rs = 10&4 M! The Dukhin
length characterizes the channel scale below which surface
conduction dominates over the bulk one. In a different
context of charge discontinuities at surfaces, it has also been
interpreted in terms of an electrokinetic ‘‘healing’’ length.43

This length scale can actually be rewritten in terms of the
Debye and Gouy-Chapman lengths as lDu B l2D/lGC.
Note also that in the limit where the Debye length is
large compared to the Gouy-Chapmann length, lGC o lD,
the non-linear Poisson–Boltzmann expression for the electro-
static potential39 allows the above length to be rewritten
as lDu B lD exp[e|Vs|/2kBT], with Vs the surface potential.
The corresponding form for the Dukhin number is more
standard in colloid science.42

This length plays an important role for the conductance in
nanochannels, cf. section IV C, where surface effects are
shown to strongly affect conductance.41,44

3. Slip lengths and surface friction. Up to now we merely
considered length scales characterizing the structure of the
fluid and its components (ions,. . .). However the dynamics of
fluids at interfaces introduce various length scales. This is in
particular the case of the so-called slip length, b, characterizing
the hydrodynamic boundary condition of a fluid at its confining
interfaces. The latter is defined according to the Navier
boundary condition (BC) as ref. 21

bqnvt = vt (7)

with n,t points to the normal and tangential directions of the
surface, vt is the tangential velocity field and b the slip length.
The slip length characterizes the friction of the fluid at
the interface and large slip lengths are associated with low
liquid–solid friction.
This point has been amply explored experimentally and

theoretically: a key result which emerges from this measurements
is that the slip length of water at solid surfaces depends
crucially on the wettability of the surface.21,45 We will come
back more exhaustively on this point in section III. At this
level, one should keep in mind that slip lengths in the range of
a few tens of nanometers are typically measured on hydro-
phobic surfaces, while b is sub-nanometric on hydrophilic
surfaces. Note however that very large slip length, in the
micron range, may be obtained on nano- and micro-structured
interfaces.46,47

This offers the possibility to modify the nanofluidics in pores
using chemical engineering of the surfaces. As the pore size
compares with b a considerable enhancement of fluid transport
is accordingly expected. Furthermore one may remark that
these values of b also compare with typical Debye lengths.
Therefore slippage effects are expected to affect ion transport
at charged surfaces. We will discuss these aspects more
exhaustively below.
A final remark is that other surface related lengths may be

constructed. This is the case in particular of the Kapitza
length, which characterizes the boundary condition for
thermal transport across an interface, see e.g. ref. 21. The
Kaptiza length behaves quite similarly to the slip length and
strongly depends on the wettability of the interface.48

4. Other length scales. The review of length scales above is
not exhaustive and many other length scales may enter
the game, depending on the problem, geometry and system
considered. For example, in the context of transport of
macromolecules (colloids, polymers, DNA, RNA, proteins, . . .),
the typical size of the particle—diameter or radius or
gyration—plays of course a central role. More precisely a
key quantity is the free energy associated with the confinement
of the macromolecule, Fc, which fixes the partitioning of the
molecule in the nanopore with respect to the bulk. The
probability of the passage of a macromolecule through a
pore is expected to scale like exp[&Fc/kBT], hence fixing its
permeability.49 For example for a polymer chain confined in a
pore with size D, the entropic cost of confinement takes the
form Fc E kBT(Rg/D)1/n, with Rg = a ' Nn the radius of
gyration of the polymer (a the monomer size and N the
polymer length). For a polymer in good solvent, the Flory
exponent is n= 5/3. Pores the size of which is below the radius
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of gyration of the molecule thus act as a molecular sieve.
This has been explored in various experiments of polymer
translocation in nanopores following the pioneering work of
Bezrukov et al.50,51 and Kasianowicz,52 as well as in the
context of DNA separation.53

C Some practical conclusions

The discussion above is summarized in Fig. 1, where we
organized the various scales at play along the scale axis. This
points to several conclusions.

1. A number of specific phenomena occur in the nanometric
range, which indeed justifies the specificity of the dynamics of
fluids in the nanometer range, i.e. nanofluidics.

2. An important conclusion is: For water under normal
conditions, the Navier–Stokes equation remains valid in
nano-channels down to typically 1–2 nanometers. This is good
and bad news. Good because one may safely use NS equations
for most nanofluidic phenomena. This robustness of continuum
hydrodynamics is remarkable.

But this is in some sense bad news since it means that
reaching specific effects associated with the granularity of the
fluid requires molecular confinement, i.e. confinement below
the nanometer. Producing nanochannels with such sizes is
technologically difficult to achieve. On the other hand, this
probably explains why most biological channels have a
molecular entanglement: to reach specificity and avoid the
‘‘universality’’ associated with continuum equations, one
should reach the fluid molecular scale.

3. This suggests that the molecular pore is the ultimate
scale to reach for nanofluidics, where, as we quoted in the
introduction, new solutions and technological breakthrough
could emerge as the behavior of matter departs from the
common expectations. But at present, there is however still a
long way before this scale is technologically accessible.

4. While it remains difficult to tune the bulk behavior of the
confined fluid, there is much more room and possibilities to
benefit from surface effects. This is clearly apparent in Fig. 1,
where surface effects enter the nanofluidic game at much larger
length scales. Surface effects enter in particular via the Debye
length, Dukhin length, slip length, all typically in the ten
nanometer range (and even more for the Dukhin length). This
suggests that specific effects will show up when one of these
lengths will compare with the pore width. Furthermore,
particular effects should also occur when two of these lengths
become comparable, independently of the confinement. This
will be explored in section IV.

Altogether nanofluidics is an incredible playground to play
with surface effects!

III. Dynamics at surfaces and the toolbox of
nanofluidics

We have discussed above that the bulk laws of hydrodynamics
are valid down to very small scales, typically B1 nm, so
that bulk Navier–Stokes equations can be used for most
nanofluidic flows. However as the size of the nanochannel
decreases, the dynamics at its surface should play an
increasingly important role. Navier–Stokes equations require
boundary conditions (BC) for the hydrodynamic flow at the

device’s surface, and a specific knowledge of these BC is a
pre-requisite to apprehend flow at the nanoscale.
As quoted in eqn (7), the BC at a solid surface introduces a

new length, the so-called Navier length or slip length, which
relates the tangential velocity vt to the shear rate at the wall,
Fig. 3:54

vt ¼ b
@vt
@z

ð8Þ

Obviously the control of the slip length is of major importance
for flows in confined geometries, and it can have dramatic
consequences on the pressure drop, electrical, and diffusive
transport through nanochannels. For instance the relative
increase in hydraulic conductance of a cylinder of radius r
due to wall slippage is 1 + 8b/r; it can be much larger for the
electrical conductance or electro-osmosis, as we will discuss in
the sections below.
As a consequence a sustained interest has been devoted in

the last ten years for the investigation of the BC and its
dependence on interfacial properties, such as surface topography
and liquid–solid interactions. Reviews on this subject can be
found in ref. 21, 55 and 56.

A Theoretical expectations for slippage

The theoretical understanding of slippage has been the object
of intense research over the last decade, see ref. 21 for a review.
The BC has been studied theoretically by Molecular Dynamics
simulations, as well as in the context of linear response
theory.45,57–61,63 It is now well understood that the BC on
atomically smooth surfaces depends essentially on the structure
of the liquid at the interface, itself determined by its inter-
actions, its commensurability with the solid phase, and its
global density.21

In order to connect the slip length to the interfacial properties,
it is useful to interpret the slip length in terms of liquid–solid
friction at the interface. The friction force at the liquid–solid
interface is linear in slip velocity vt:

Ff = &Alvt (9)

with l the liquid–solid friction coefficient and A the lateral
area. By definition the slip length is related to the friction

Fig. 3 Hydrodynamic slip and definition of the slip length b: the slip

length is the distance in the solid at which the linear extrapolation of

the velocity profile vanishes.
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coefficient according to b= Z/l, with Z the bulk viscosity. As a
phenomenological friction coefficient, l can be expressed in
terms of equilibrium properties in the form of a Green–Kubo
(GK) relationship:21,59,62

l ¼ 1

AkBT

Z 1

0
hFf ðtÞ % Ff ð0Þiequ dt ð10Þ

where Ff is the total (microscopic) lateral force acting on the
surface. In practice, this expression is difficult to estimate.
However some useful information on the slip length may be
extracted from it.

A rough estimate of slippage effects can be proposed.63 One
may indeed approximate the GK expression as
l ( 1

AkBT
hF2

f iequ ' t, with t a typical relaxation time and
hF2

f iequ the mean-squared lateral surface force. We then write
t B s2/D where s is a microscopic characteristic length scale
and D the fluid diffusion coefficient, while the rms force is
estimated as hF2

f iequ B C>rs(e/s)2, with e a typical fluid–solid
molecular energy, r the fluid density and C> a geometric
factor that accounts for roughness effects at the atomic level
(large C> corresponding to a larger atomic roughness).45,63

Altogether this provides a microscopic estimate for the slip
length as

b ) kBTZD
C?rse2

ð11Þ

A more systematic derivation leads to a very similar result,21,62

with eqn (11) multiplied by the inverse of the structure factor
of the fluid, Sw(qJ), computed at a characteristic wave-vector
of the solid surface qJ: b p Sw(qJ)

&1. This term measures a
kind of commensurability of the fluid with the underlying solid
structure, in full analogy with solid-on-solid friction. Note also
that the slip length depends on the product Z ' D, so that
according to the Stokes–Einstein relationship, the slip length
is not expected to depend on the bulk fluid viscosity (except
for specific situations where these two quantities can be
decorrelated). The scalings proposed by the above simple
estimate are in good agreement with molecular dynamics
results.21,63

According to eqn (11) significant slippage should occur on
very smooth surfaces, in the case of a low density at the wall
(which requires both a moderate pressure and unfavorable
liquid–solid interactions), or a low value of Sw(qJ), which
characterizes liquid/solid commensurability. It also suggests
that low energy surfaces, i.e. with small liquid–solid interaction
e, should exhibit large slippage. Accordingly, hydrophobic
surfaces should exhibit larger slip length than hydrophilic
ones.

We plot in Fig. 4 (top) results for the slip length obtained by
Molecular Dynamics of a water model over a broad variety of
surfaces.45,63 A ‘quasi-universal’ dependence of the slip length
on the contact angle is measured, with—as expected from the
above arguments—an increase of the slip length for more
hydrophobic surfaces.

B Experimental results

On the experimental side a race has engaged toward the
quantitative characterization of BCs within nanometer resolution,
using the most recent developments in optics and scanning

probe techniques.55,56 This experimental challenge has generated
considerable progress in experimental tools for nanofluidic
measurements, and the values of the slip lengths reported had
a tendency to decrease as the resolution and robustness of the
techniques has increased. An intrinsic difficulty stems from the
fact that the BC is a continuous medium concept involving an
hydrodynamic velocity averaged on many molecules in the
liquid and extrapolated to the wall: it does not simply reduce
to the velocity close to the surface of molecules or tracer
particles, which are furthermore submitted to Brownian
motion and reversible adsorption. Also, the surface has to
be smooth and homogeneous on the scale of the probed area
in order to characterize an intrinsic BC, and not an effective
slip length. Thus, the problem of the BC has been a
discriminating test of the capacity of instruments to perform
quantitative mechanical measurements at the nanoscale. We
propose here a brief overview of the current state-of-the-art.
This offers the opportunity to quote the various tools which
have been developed recently to study flow and fluid dynamics
at nanofluidic scales.

Fig. 4 Slip length b of water as a function of the contact angle on

various smooth surfaces. Top: Results from Molecular Dynamics

simulations by Huang et al. for the slip length of water on

various surfaces, from ref. 45. The dashed line is a theoretical fit

scaling like b p (1 + cos y)&2. Bottom Compilation of various

experimental results.
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The Surface Force Apparatus provided the first sub-
nanometer resolution measurement of BCs, based on the
viscous force Fv acting between two crossed cylinders whose
distance D is measured within Angström resolution by the
so-called FECO interferometric fringes:64

Fv ¼
6pZR2 _D

D
f * ð12Þ

f *s ðD=bÞ ¼ D

3b
1þ D

6b

" #
ln 1þ 6b

D

" #
& 1

$ %
ð13Þ

with Z the liquid viscosity and R the cylinder radius.65 In case
of a no-slip BC, Fv reduces to the Reynolds force between a
sphere and a plane. Chan and Horn13 investigated the flow of
various organic liquids confined between atomically flat mica
surfaces and showed that they obeyed the no-slip BC, with the
no-slip plane located about one molecular size inside the liquid
phase. Their results were confirmed by other experiments
running the SFA in a dynamic mode, and extended to water
and to various (wetting) surfaces.14,66 Further investigations
focused on non-wetting surfaces and reported the existence of
very large slip lengths (C1 mm) associated to a complex
behaviour, with slippage appearing only under confinement
and above a critical shear stress.67 However it was shown that
elasto-hydrodynamics effects due to non perfectly rigid
surfaces (such as glued mica thin films) retrieve this typical
behaviour.68 Experiments on rigid surfaces later reported
the existence of substantial slippage of water on smooth
homogeneous non-wetting surfaces, with a slip length increasing
with the contact angle and reaching a range of 20 nm at
contact angles of 1101,69,70 see Fig. 4.

The AFM with a colloidal probe operates along a similar
principle but with a smaller probed area than the SFA. In
pioneering investigations Craig et al. found a shear-rate
dependent BC of sucrose solutions on partially wetting SAMs,
with slip lengths reaching 20 nm at high velocities,71 while
Bonacurso et al. found a constant (no shear dependent) slip
length of 8–9 nm for water on wetting mica and glass
surfaces.72 These dissimilar findings also did not agree with
available theoretical results. However Ducker et al., using an
independant optical measurement of the probe-distance in the
AFM, found a regular no-slip BC on a similar system as the
one investigated by Craig et al.73 It was recently shown by
Craig et al. that the lateral tilt of the cantilever was a
significant issue in interpretating hydrodynamic forces.74

Vinogradova et al. also evidenced the important effect of the
dissipation due to the cantilever.75 Using a ‘‘snow-man’’ probe
made of two spheres glued on the top of each other, they
showed a perfect agreement with the no-slip BC on hydro-
philic surfaces, confirming SFA experiments, and a moderate
slip length of 10 nm of water onto rough hydrophobic
surfaces. Finally dynamic measurements using an oscillatory
drive were implemented in the AFM by Maali et al. so as to
measure the dissipation coefficient with high accuracy.76 Using
this technique they found a no-slip BC of water onto mica
surface, and a 8 nm slip length on atomically smooth highly
ordered pyrolytic graphite (HOPG) with contact angle 701.77

An alternative way to measure interfacial hydrodynamic
dissipation is through the dissipation–fluctuation theorem, for
instance by measuring the modification of the Brownian
motion of a probe at the vicinity of a surface. In Joly et al.
experiment22 the average transverse diffusion coefficient of
colloidal particles confined in a liquid slab was measured by
Fluorescence Correlation Spectroscopy as a function of the
film thickness, and related to the boundary condition on the
slab walls. A resolution better than 5 nm is obtained with
particles of 200 nm nominal diameter, by averaging the data
over 100 000 events crossing the measurement volume. The
originality of the method is to give access to the boundary
condition without any flow, i.e. really at thermodynamic
equilibrium. It is thus directly comparable to theoretical
predictions. A collateral result is the direct probe of a property
of great interest in nanofluidics, i.e. the motion of a solute
close to a wall.
Besides the dissipative methods, great progress was achieved

in the development of optical methods giving direct access
to the flow field and its extrapolation to the solid wall with a
sub-micrometer resolution.
The Micro-Particle Image Velocity (m-PIV) technique has

been widely used in microfluidics. First attempts to determine
the BC yielded slip lengths of micrometer amplitude,78 difficult
to conciliate with theoretical expectations, although the
variation of slippage with the liquid–solid interaction were
consistent. Gaining better resolution raised many issues.
Besides colloidal forces acting on particles close to a wall,
such as electro-osmosis induced by the streaming potential,
which has to be taken into account, an important source of
error is the depletion induced by the colloidal lift.79 By using
the signal of non-moving particles adsorbed to the wall Joseph
et al.80 increased the resolution on the slip length to 100 nm in
a configuration similar to ref. 78, and found no slippage at this
(100 nm) scale whatever the wettability of the surface. A recent
investigation using double-focus FCS confirmed the existence
of slippage of a few ten nanometers on hydrophobic surfaces.81

A major improvement toward nanometric resolution is the
Total Internal Reflection Fluorescence method which uses an
evanescent wave at the interface to be probed, and allows the
measurement of the distance of a tracer particle to the wall
through the exponential decay of the signal amplitude.82,83,84,103

Bouzigues et al. found a water slip length of 21 nm (,12 nm)
on OTS coated glass capillaries,103 while Lasne et al. measured
a water slip length of 45 nm (,15 nm) on a similar surface.84

These results are consistent and the different values of slip
length may well be ascribed to slight variations in surface
preparation. Note that in such measurements, the size of the
probe itself is a major issue in the race toward nanometric
resolution: Brownian motion increases as the particle size
decreases, not only adding noise to the measurement, but
allowing particles to leave the focal plane between two successive
images which decreases the locality of the measurement. Some
specific statistical treatment has to be performed in order to
avoid any bias in the estimated velocity.84,85,103

A summary of the results obtained with water on various
smooth surfaces is gathered in Fig. 4 plotting the slip length
as a function of the contact angle. The various methods
show the same trend: water does not slip on hydrophilic
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surfaces, and develops significant slippage only on strongly
hydrophobic surfaces. The highest slip lengths reach the range
of 20–30 nm: accordingly hydrodynamic slippage is non-
relevant in microfluidic devices, but of major importance in
nanochannels. On this basis one expects that water flow in
highly confined hydrophobic pores, such as mesoporous media
or biological channels (cf. the Aquaporin example in the
Introduction), should be much less dissipative than ordinary
Poiseuille flow. The results obtained with the various methods
show a very good qualitative agreement with theory and
molecular dynamics simulations performed with water.45

However the experimental slip lengths show a systematic bias
toward higher values than theoretical ones. The discrepancy is
actually not understood and might be the effect of gas
adsorbed at the wall, possibly condensed in nanobubbles, an
active research area recently.86,87,88

Finally, the case of organic molecules still raises debates. In
the case of perfect wetting, various works on mica surfaces,13,18

as well as on glass surfaces,14,70 showed that alkanes and
OMCTS have a no-slip velocity either at the wall or at a
molecular size inside the liquid phase (negative slip length).
However Pit et al., using a fluorescence recovery method with
molecular probes in a TIRF configuration, found very large
slip lengths (C100 nm) of hexadecane and squalane on
atomically smooth saphir surfaces although these liquids
wet perfectly the saphir.89,90 Further work is in progress to
understand if these large slip lengths in the case of favorable
solid–liquid interactions reflect a particular effect of molecular
structure and incommensurability at the saphir/liquid interface.
More generally, although the problem of the boundary
condition has generated an impressive instrumental progress
in the quantitative measurement and control of flows at a
nanoscale, a full quantitative confrontation with the theory,
e.g.eqn (11), is still lacking.

IV. Nanometric diffuse layers and transport
therein

The transport of electrolytes within the EDL and the
associated phenomena have been extensively studied during
the last century due in particular to its central role in colloid
science. It has been accordingly discussed exhaustively in
textbooks and reviews42,91 and in the present section we merely
point to the main concepts which will be useful for our
discussion.

In spite of this long history, new directions and perspectives
have been opened very recently in this old domain. Novel
insight into the nanometric Debye layer have indeed been
reached: new tools now make it possible to investigate the
detailed structure and dynamics inside the Debye layer. This
concerns both the experimental side, see previous section, and
numerical side, with the development of ever more powerful
Molecular Dynamics tools.

From these more ‘molecular’ views of the EDL, in contrast
to the more standard ‘continuum’ picture, new concepts and
phenomena have emerged. We shall thus merely focus here on
the recent progress and new leads opened by nanofluidics in
this domain.

A From Debye layer to ion specific effects

An EDL builds up at a charged interface: it is the region of
finite width where the surface charge is balanced by a diffuse
cloud of counterions.91 The Debye layer is usually described
on the basis of the mean-field Poisson–Boltzmann (PB) theory,
see ref. 39 for a review. Ions are described as point charges and
only their valency enters the description. Correlations between
charges are accordingly neglected. The thermodynamic
equilibrium balancing the ions entropy to their electrostatic
interaction with the surface (attraction for the counter-ions
and repulsion for the co-ions) leads to the introduction of the
Debye length, as introduced above in eqn (5) and which we
recall here:

lD = (8plBrs)&1/2 (14)

Getting more into details, the PB description results from the
combination of (i) the Poisson equation relating the electro-
static potential V to the charge density re = e(r+ & r&)
according to

DV ¼ & re
e

ð15Þ

with e the dielectric constant, here identified to its bulk value,
and D the spatial Laplacian; and (ii) the thermodynamic
equilibrium leading to a spatially constant electro-chemical
potential for the ions:

m, = m(r,) , Z,eV (16)

with Z, the ion valency, r, the ion densities and under the
above assumptions, m(r) = m0 + kBT log r the perfect gas
expression for the chemical potential.
Though its crude underlying assumptions, the mean-field

PB theory captures most of the physics associated with the
EDL and is the usual basis to interpret ion transport. One
reason for this success is that ion correlations within the EDL,
which are discarded in PB, can generally be neglected. This can
be quantified by introducing a coupling parameter, Gcc, which
compares the typical inter-ions electrostatic interaction to
thermal energy.92,93 Following ref. 92 and 93, the latter is
estimated as Gcc E e2/(4pel)/kBT = lB/l, with l the mean
distance between ions at the surface. This scale is related to the

charge density S, as l E S&1/2, so that Gcc (
ffiffiffiffiffiffiffiffi
S‘2B

q
.93 PB is

expected to break down when the coupling parameter exceeds
unity. For typical surfaces this threshold is not reached: for
glass, the surface charge is at most in the 10&2 C/m2 range
(B6 ' 10&2e/nm2), and the coupling parameter Gcc remains
smaller than unity.
Other assumptions inherent to PB could be also questioned.

In the PB description, the dielectric constant is assumed to
be spatially uniform and identical to its bulk value. This
assumption is expected to break down very close to surfaces,
in particular hydrophobic, where water ordering induces a
local electric dipole pointing outward to the interface.94 This
casts some doubts on the local relation between medium
polarization and local electric field. However MD simulations
suggest that using the bulk dielectric constant in the Poisson
equation is not a critical assumption and can be safely used to
describe the EDL.94
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PB description however misses an important class of effects
associated with the specific nature of ions, and which affect
the fine structure of the EDL. Ion specificity is intimately
connected to Hoffmeister effects, namely that the interactions
between charged and neutral objects in aqueous media do
depend crucially on the type of ion and not only on electrolyte
concentration.95–97 Such effects occur not only at the air–water
interface, where it does affect surface tension depending on ion
type, but also at hydrophobic surfaces.96,98 This effect is
evidenced in Fig. 5, where results of molecular dynamics
simulations of ions dispersed in water (SPC-E model) from
ref. 98 demonstrate that iodide ions do strongly adsorb at
air–water and hydrophobic interfaces, while chloride ions do
not. Note that an EDL builds up even in the case of a
neutral interface, we shall come back to this result and its
implications. In general heavier halide ions adsorb at the
hydrophobic surface. This effect is mostly absent at a
hydrophilic interface. Tools of molecular simulation and
new spectroscopic techniques have fully renewed the interest
in ion specific phenomena.97 The origin of the effect involves
many aspects, as ion polarizability, image-charge interaction,
ion-size (steric) effects, dispersion forces and the mechanisms
are still the object of intense research. . . and also of some fierce
debate, such as for the preferred adsorption of hydronium
versus hydroxyl at interfaces,99 which fixes the charge of the
liquid–vapor interface.

Such ion-specificity effects, which go beyond the traditional
PB framework, have profound effects on the ion-transport
process within the Debye Layer, which we explore in the next
section.

B Interfacial transport: electro-osmosis, streaming currents,
and beyond

The EDL is at the origin of various electrokinetic phenomena.
Here we shall discuss more particularly electro-osmosis (and
-phoresis for colloids) and its symmetric phenomena, streaming
currents. Both phenomena take their origin in the ion
dynamics within the EDL. Due to the nanometric width of
the EDL, these phenomena are ‘nanofluidic’ by construction
and the various lengths introduced in section II will appear.

Let us first discuss electro-osmosis (EO). EO is the
phenomenon by which liquid flow is induced by an electric
field. In its simplest form, the fluid velocity vf beyond the EDL
is linearly connected to the applied electric field Ee according
to the Smoluchowski formula:42

v1 ¼ & ez
Z
Ee ð17Þ

with e the dielectric constant, Z the viscosity and z the so-called
zeta (electrostatic) potential. The common interpretation of z
is that it is the electrostatic potential at the ‘‘shear plane’’, i.e.
the position close to the wall where the hydrodynamic velocity
vanishes. As we now discuss, this interpretation should be
taken with caution.
Let us briefly recall the derivation of eqn (17). Fluid

dynamics is described by the stationary Stokes equation:

Z
@2vx
@z2

þ reEe ¼ 0 ð18Þ

Here we use a frame where the electric field Ee is along x and
parallel to the planar surface, and the velocity field vx only
depends on the direction z perpendicular to it.
A key remark, already mentioned above, is that the charge

density, re = e(r+ & r&), is non-vanishing only within the
EDL, so that the driving force for fluid motion, Fe = reEe is
limited to that nanometric region, and vanishes otherwise. In
order to obtain the velocity profile, the Stokes equation should
be integrated twice, and thus requires two boundary conditions.
Far from the surface, the velocity profile is plug-like and
qzv|z = N = 0. At the wall surface, the hydrodynamic
boundary conditions for the hydrodynamic velocity profile
should be specified. We have discussed above that the
latter introduces a slip length b, according to eqn (7), as
bqv|z = 0 = v(z = 0). Using Stokes and Poisson equations,
one sees immediately that the full velocity profile is related to
the electrostatic potential V as

vðzÞ ¼ & e
Z
E ' ½&VðzÞ þ z. ð19Þ

where z has the meaning of a zeta potential156 and takes the
expression

z = V0'(1 + b keff) (20)

where V0 is the electrostatic potential at the wall and keff is the
surface screening parameter, defined as keff= &V0(0)/V0.

94,100

For weak potentials this reduces to the inverse Debye length:
keff C l&1

D , but its full expression takes into account possible
non-linear effects. The fluid velocity far from the surface
(i.e. outside the EDL) has the Smoluchowski expression
above, eqn (17), with the expression of the zeta potential, z,
given in eqn (20). This prediction was first discussed in ref. 101,
and rederived independently in more recent works.94,100 We
emphasize that the above result, eqn (19)–(20), does not make
any assumption on the specific model for the EDL, except for
a uniform dielectric constant e and the validity of the Stokes
equation, which was discussed above to be valid down to the
nanometer scale.
The physical meaning of the above expressions is quite clear.

The velocity in the fluid results from a balance between the

Fig. 5 Simulated density profiles of negative ions (solid lines),

positive ions (dashed lines) and water (dotted lines) for roughly 1 M

solutions of (a) NaI and (b) NaCl between neutral hydrophobic

surfaces, (c) NaI at a vapor–liquid interface and (d) NaI between

neutral hydrophilic surfaces. From ref. 98.
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driving electric force and the viscous friction force on the
surface. Per unit surface, this balance writes

Z
v1

lD þ b
( eS' E ð21Þ

with S the surface charge density (in units of m&2) at the wall.
The expression for the viscous friction expresses the fact that
flow gradients occur on a length b + lD, see Fig. 6. Relating
the surface charge to the surface potential V0 (eS = &eqzV|0),
one recovers the above results.

As a side remark, one may note that the slip enhancement
does not require any assumption on the electric and fluid
behavior. Indeed at a fully general level, the (exact) momentum
balance at the surface shows that the velocity at the wall
is exactly given by vwall ¼ Dwall

l E, with Dwall the dielectric
displacement computed at the surface, and l the surface
friction coefficient introduced in eqn (9). The latter is related
to the slip length according to the definition l / Z/b. This
expression for the wall velocity under an applied electric field
neither invokes Navier–Stokes equation, nor any assumption
on the dielectric behavior. This wall velocity acts as a lower
bound to the asymptotic EO velocity, i.e. the one measured at
infinite distance from the surface. This demonstrates that the
enhancement of the EO velocity due to low liquid–solid
friction, i.e. large slippage, has a fully general validity.

Several conclusions emerge from eqn (20). First, if the wall
is characterized by a no-slip BC, with b = 0, then the zeta
potential z identifies with the electrostatic potential V0

computed at the surface (up to a possible molecular shift
due to the precise position of the hydrodynamic BC which
defines the so-called shear plane [100]): this is the common
assumption, as usually expressed in textbooks.42 Now, if finite
slippage occurs at the surface, then the zeta potential is much
larger than the surface electrostatic potential, V0: it is amplified
by a factor 1 + b/lD (assuming for the discussion that
keff = l&1

D ). This factor may be very large, since on bare
hydrophobic surfaces b may reach a few tens of nanometers
(say b B 20–30 nm), while the Debye length typically ranges
between 30 nm down to 0.3 nm (for 10&4 M to 1 M).

These predictions have been confirmed by molecular
Dynamics simulations of electro-osmosis (and streaming
current, see below).94,98,100 Various systems were considered,
from a model electrolyte involving ions in a Lennard-Jones
solvent, to a more sophisticated SPC-E model of water, with
ions of various nature. Altogether simulations confirm the key
role of slippage on electrokinetics and results do fully agree
with the above description.

On the experimental side, this strong influence of surface
dynamics on the electrokinetics at surfaces has not been
appreciated and explored in the electrokinetic literature up
to now, and very few experimental investigations have been
performed on this question.102,103 One key difficulty is that the
above result for the zeta potential, eqn (20), involves a strong
entanglement between electrostatics, through surface potential,
and fluid dynamics, through hydrodynamic slippage. In order
to disentangle the two effects, two independent measurements
of these quantities should in principle be performed. To our
knowledge the first work on the subject was performed by
Churaev et al. in ref. 102, and results indeed suggested a slip

effect, at the expense however of a rather uncontrolled
assumption on the surface potential. More recently this
problem was tackled in ref. 103 using the nanoPIV tool
discussed above. This set-up allows for two independent
measurements of z and V0, leading to an unambiguous
confirmation of the above predictions of slippage effect on
the zeta potential. Indeed both the velocity profile, which is
fitted to eqn (19), and the nanocolloid concentration profile,
from which the surface potential is deduced on the basis of the
electrostatic repulsion, are measured independently. Velocity
profiles from ref. 103 are displayed in Fig. 7. While the two
surfaces under consideration (a hydrophilic glass and a
silanized hydrophobic surface) had basically the same surface
potential, a factor of two is found on the zeta potential under
the conditions of the experiment. Results are consistent with a
slip length of E40 nm. The factor of two for z/V0 occurs here
due to a Debye length of E50 nm in the experimental
condition of ref. 103 (a large Debye length is required to
investigate flow inside the Debye layer at the present spatial
resolution, B20 nm, of the nanoPIV technique). As a side
remark, note the large slip velocity at the wall in the slippy case
in Fig. 7: this is expected since according to eqn (19), the
velocity at the surface is directly proportional to the slip
length b, as vð0Þ ¼ &e

ZE ' V0
b
lD

(assuming, to simplify, that
keff E l&1

D ).
This result opens up a new perspective to make use of

surface physico-chemistry in order to optimize electric-
induced transport and control flow by surface properties. It
was also argued that such slip-induced optimization would
strongly enhance the efficiency of energy conversion devices
based on electrokinetic effects.104,105

Besides slip effect, ion-specificity also has an important
influence on the electro-osmotic transport. As we reported
above, the structure of the EDL is affected by the nature of the
ions under consideration, especially at hydrophobic walls (and
air–water interfaces). This can be best seen by rewriting the
expression for the zeta potential, in eqn (20), in a slightly
different form:

z ¼ & 1

e

Z 1

0
ðz0 þ bÞreðz0Þ dz0 ð22Þ

with re the charge density. This expression e.g. comes from the
double integration of the Stokes law. As seen in Fig. 5 ion
specific effects have a strong influence on the charge distribution,
and do indeed strongly modify the value of z. This effect was

Fig. 6 Sketch of the influence of slippage on the electro-osmotic

transport. Slippage reduces the viscous friction in the electric Debye

layer, as the hydrodynamic velocity gradient occurs on a length

b + lD, instead of l without slippage. Flow is accordingly enhanced

by a factor 1 + b/lD.
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studied in various MD simulations of electrokinetics94,98,106

and several counter-intuitive effects were indeed observed,
such as flow reversal (as compared to the expected surface
charge),106 or even the existence of a non-vanishing zeta
potential for a neutral surface!94,98 These effects can be under-
stood from eqn (22): while for a vanishing surface charge, the
system is electro-neutral and

RN
0 re(z0) dz0 = 0, this however

does not imply that its first spatial moment, which enters the
expression of z according to eqn (22), be zero.

More quantitatively, effects of ion-specificity on the zeta
potential were rationalized in ref. 94 on the basis of a minimal
model, which was subsequently validated on MD simulations.
This description is based on the idea that ‘big’ ions have a
larger solvation energy and are therefore attracted to hydro-
phobic interfaces in order to minimize this cost.107 An estimate
of the solvation free-energy of ions close to the interface allows
for analytical predictions for ion-specific effects on the zeta
potential.

We finally quote that all of the above discussion on the
electro-osmotic transport also applies to the streaming current
phenomenon, by which an electric current is induced by the
application of a pressure gradient. Again, since the EDL is not
electro-neutral, liquid flow will induce an electric current
inside the EDL.42 According to the Onsager symmetry
principle, these two phenomena—electro-osmosis and streaming
current—are intimately related and the cross coefficients
should be identical. The expression for the streaming current
Ie under an applied pressure gradient rP takes the form:

Ie ¼ & ez
Z
Að&rPÞ ð23Þ

where z takes the same expression as in eqn (20) and A is the
cross sectional area of the channel.

We end this section by mentioning that the above effects
generalize to any interfacial transport phenomena. Indeed the
above electrically induced phenomena belong to a more
general class of surface induced transport, which also involves
phenomena known as diffusio-osmosis or thermo-osmosis and
their associated phoretic phenomena for colloidal transport.21,91

Thermo-osmosis points to fluid motion induced by thermal
gradients, while diffusio-omosis corresponds to fluid flow
induced by gradients in a solute concentration. Though relatively
old, thermophoretic transport has been the object of recent
investigations in particular for colloid manipulation.108–110 Its
origin is still the object of an intense debate with recent
progress in disentangling the various contributions.108,109,111

On the other hand, diffusiophoretic and osmotic transport
have been less explored91,112 but their potential in the
context of microfluidic applications has been demonstrated
recently.113,114 This opens up the novel possibility of driving
and pumping fluids114—as well as manipulating colloids—
with solute contrasts, which have been barely explored up to
now and would deserve further investigations in the context of
nanofluidics. A common point to all these phenomena is their
‘‘nanofluidic root’’: as for the electro-osmotic transport
discussed above, the driving force for fluid motion is localized
within a diffuse layer of nanometric size close to the surfaces.
Therefore, this opens up the possibility of strongly amplifying
their effect on the basis of slippage effects at the solid interface.
As demonstrated theoretically in ref. 115, the amplification
is—as for electro-osmosis above—amplified by a factor
1 + b/l, where l is the width of the diffuse layer. Similar
effects are predicted for thermophoretic transport.116

Finally, one may raise the question of interfacial transport
on super-hydrophobic surfaces. Such surfaces, achieved using
nano- or micro-engineering of the surfaces, were shown to
considerably enhance the slippage effect and exhibit very large
slip length in the micron (or even larger) range.46,47,117

Accordingly, a naive application of the previous ideas would
suggest massive amplification by a factor up to 104(!).
However, the composite structure of the superhydrophobic
interface, involving both solid–gas and liquid–gas interfaces,
makes these transport mechanisms far more complex in this
case than on a smooth interface. It has been shown that in the
regime of a thin Debye layer, no amplification is obtained for
electro-osmosis on superhydrophobic surfaces,114,148 unless a
non-vanishing charge exists at the liquid–gas interface. In
contrast, a massive amplification is predicted for diffusio-
osmosis.114 This strong prediction has not received an
experimental confirmation up to now.

C Surface versus bulk: conductance effects

We now discuss the surface conductance effect in nanochannels.
The conductance, K, characterizes by definition the electric

current versus electric potential drop relationship. As pointed
out previously, conductance probes the number of free
charge carriers, here ions. In the bulk K is therefore expected
to be proportional to the salt concentration rs (ionic strength).
Now in the presence of surfaces, the charges brought by
the surface lead to a supplementary contribution to the
conductance.

Fig. 7 NanoPIV measurements for the electroosmotic flows close to

hydrophilic pyrex K and hydrophobic OTS-coated surface ’. The

deduced zeta potentials are z = &66 , 8 mV (hydrophilic glass) and

z = &123 , 15 mV (hydrophobic, silanized surface), while the

electrostatic potentials were independently measured to be comparable:

V0 C &69 mV for the hydrophilic (pyrex) surface and V0 C &65 mV

for the hydrophobic (OTS-coated) surface. The salt concentration is

1.5 ' 10&4 mol L&1 and the driving electric field is E = 500 V m&1.

Dashed lines are fits to the theoretical predictions using eqn (19), with

lD = 51 , 10 nm (measured independently) and b = 0 , 10 nm

(bottom) and b = 38 , 6 nm (top) for the slip lengths. Figure from

ref. 103.
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Surface conductance is actually a rather classical phenom-
enon in colloid science,42 but it was demonstrated quite
recently in the context of nanochannel transport by Stein
et al.41 and then by other groups.44

As we introduced in section II B 2.c, the ratio of bulk to
surface charge carriers is characterized by the Dukhin length
lDu. This length accordingly describes the competition
between bulk and surface conductance. Depending on salt
concentration, this length can be much larger than the Debye
length. Surface conductance is therefore expected to dominate
over the bulk contribution for nanochannels smaller than lDu.
The magnitude of the surface conductance effect is amplified in
small channels, but a key point is that it does not require
Debye layer overlap.

Experimentally, the surface contribution to the conductance
shows up as a saturation of the conductance in the limit of
small salt concentration, while its expected bulk counterpart is
expected to vanish in this limit. The saturation originates in
the charge carriers brought by the surface charge, the number
of which is independent of the salt concentration. This is
illustrated in Fig. 8, from ref. 41, where the conductance is
measured in channels of various width, from 1015 nm down
to 70 nm.

Let us discuss more specifically this point. In a slit geometry
with width h, the general expression for the current (for a unit
depth of the slit) takes the form

Ie = e
R
h/2
&h/2dz[r+(z)u+(z) & r&(z)u&(z)] (24)

where the averaged velocities of the ions is

u,(z) = v(z) , em,Ee, (25)

with m, the ion mobility, defined here as the inverse of the
ion friction coefficient (we assume furthermore m, = m).
The velocity v(z) is the fluid velocity induced by electro-
osmosis under the electric field, as given in eqn (19). The
second term is the contribution to the current due to ion
electrophoresis.

Combining the expression of the velocity v(z), as in eqn (19),
to eqn (24)–(25), one may remark that the electro-osmotic
contribution to the current takes the form of the integral of
the charge density times the electrostatic potential: this has
therefore the form of an electro-static energy, E. This is
confirmed by the full calculation, which leads to a conductance
expression in the form:41,118

I/Ee = 2e2mrsA(1 + H) (26)

withA the channel cross section (A= w ' h with w the depth
of the channel) and the surface correction H

H ¼ cosh
eVc

kBT

" #
& 1þ E

4rskBTh
1þ 1

2p‘BmZ

" #
ð27Þ

where Vc = V(0) is the electrostatic potential at the center of
the channel, and E ¼ e

2

R
slit dz

dV
dz

& '2
the electrostatic energy

(and not the free energy). Note that writing m = 3pZdi with
di the ion diameter, the last term in eqn (27) is typically of the
order di/lB. It originates in the surface-induced—electro-
osmotic—contribution to the conductance.
In the low salt concentration regime, rs - 0, the length

scales are organized in the order:

lGC o lD o lDu, (28)

since lD/lGC = lDu/lD c 1 for rs - 0. Saturation will occur
as the channel width h is smaller than the Dukhin length,
h o lDu, independently of the order of h and lD. Debye layer
overlap is accordingly not the source of the saturation of the
conductance. In this regime, the second term in eqn (27),
associated with surface contributions is dominant.
In this limit, the calculation of the electrostatic energy shows

that E B |S|. The fact that E scales linearly in |S| and not as
|S|2—as would be first guessed—is due to the non-linear
contributions to E in the Poisson–Boltzmann description.
These become dominant in the rs - 0 limit where the
Debye length becomes larger than the Gouy–Chapman length.
Altogether, this shows that for rs - 0, the conductance
saturates at a value

Ksat ( e2mw' 2jSj 1þ 1

2p‘BmZ

" #
ð29Þ

with w the depth of the channel. This value is independent of
both h and rs. This saturation can be also partly understood in
the context of Donnan equilibrium discussed below. In the
limit rs - 0, only the counter-ion contributes to the ion
concentration in the channel, r+ + r& E 2S/h, see eqn (34)
below, so that the conductance reduces to Ksat E e2mw2|S|.
This analysis however misses the electro-osmotic contribution
to the conductance (second term in the brackets in eqn (29)).
A few remarks are in order. First, the dependence of the

conductance on the surface properties, here the surface charge
S, opens new strategies to tune the nanochannel transport
properties, via an external control. This has been used by
Karnik et al. to develop a nanofluidic transistor,5 allowing the
control of the conductance of the nanochannel thanks to a
gate voltage.

Fig. 8 Channel height dependence of ionic conductance behavior.

The conductance of fluidic channels is plotted against salt concen-

tration for various nanochannel width h (h = 1015, 590, 380, 180 and

70 nm). The inset displays the fit values for the surface charge at the

nanochannel walls as a function of h. From ref. 41.

1086 | Chem. Soc. Rev., 2010, 39, 1073–1095 This journal is !c The Royal Society of Chemistry 2010



Another interesting remark is that along the same line
as in section IV B, the electro-osmotic contribution to the
conductance could be also amplified by slippage effects. This
can be readily demonstrated by a direct integration of
eqn (24). Accordingly slippage effects add a new contribution
to the conductance:

Kslip ¼ 2e2w
S2

Z
' b ð30Þ

Assuming Stokes law for ion inverse mobility (m= (3pZdion)&1

with dion the ion size), then Kslip/Ksat B b ' dion|S| E b/lGC:
since the Gouy–Chapman length lGC is typically nanometric
(or less), this enhancement is therefore very large, even for
moderate slip length (b B 30 nm)!

The channel resistance is accordingly decreased by the
same factor in the low salt regime. This amplification of
conductance by hydrodynamic slippage opens very interesting
perspectives in the context of electrokinetic energy conversion,
as was pointed out recently by Pennathur et al.105 and Ren and
Stein.104 Moderate slippage, with slip length of a few tens of
nanometers, is predicted to increase the efficiency of the energy
conversion up to 40% (and of course even more with larger
slip lengths). This attracting result would deserve a thorough
experimental confirmation.

D Debye layer overlap and nanofluidic transport

The phenomenon of Debye layer overlap has already been
widely explored in the nanofluidic literature. As we pointed
out above, various reasons underlie this specific interest: (i)
well controlled nanometric pores with size in the range 20–100
nm can be produced using micro-lithography techniques:40

this does indeed correspond precisely to the range of typical
Debye lengths for usual salt concentrations (remember that
lD = 30 nm for a salt concentration of 10&4 M); (ii) the
overlap of Debye length does indeed have a strong influence
on ion transport, so that novel transport effects emerge at this
scale, with applications for chemical analysis.

The question of Debye layer overlap, and related phenomena,
was discussed quite extensively in a recent review by Schoch
et al.40 Here we thus focus on the main guiding lines under-
lying this problem and point to the key physical phenomena at
play. In particular we shall discuss an illuminating analogy to
transport in semi-conductors.

1. Donnan equilibrium. An important notion underlying
the Debye overlap is the so-called ‘‘Donnan equilibrium’’, which
is a well know concept in colloid literature. Due to the
supplementary charges brought by the nanochannel’s surface, a
potential drop builds up between the nanochannel’s interior and
the external reservoir, in order to maintain a spatially uniform
chemical potential of the ions. The latter, as introduced above,
takes the form (assuming a dilute ion system):

m(r,) = m0 + kBT log(r,) , eV = m0 + kBT log(rs) (31)

with rs the (uniform) salt concentration outside the nano-
channel, i.e. the ‘‘reservoir’’. These equations are completed
with the overall electroneutrality over the channel,

R
h/2
&h/2 dz(r+(z) & r&(z)) = 2S (32)

with z along the direction perpendicular to the nanochannel
(here assumed to be a slit), see Fig. 9.
We now focus on the thin pore limit, assuming Debye layer

overlap h t 2lD. In this situation, ion densities and electro-
static potential are approximately spatially uniform over the
pore thickness h. Ion densities thus obey:

r+ ' r& = r2s

rþ & r& ¼ 2S
h

ð33Þ

Altogether, this leads to

r, ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2s þ
S
h

" #2
s

, S
h

VD ¼ kBT

2e
log

r&
rþ

$ % ð34Þ

where the mean electrostatic potential VD is denoted as the
Donnan potential.
Note that the amplitude of the Donnan potential VD is

quantified by the ratio lDu/h where lDu = S/rs is the Dukhin
length introduced above. To give an order of magnitude
lDu B 1 nm for rs = 1 M and a typical surface charge.
It is finally of interest to mention the strong analogy

between the Donnan equilibrium and the equilibrium of
charge carriers in doped semi-conductors (SC). In the latter
the electron density rn and the hole density rp obey eqn (33)
with the electrolyte density rs replaced by the carrier density in
the intrinsic (non-doped) SC. The surface charge in the
nano-channel actually acts as impurities delivering additional
carriers, with S 4 0 corresponding to donors (N-doped SC)
and S o 0 acceptors (P-doped SC). The Donnan potential is
then the analogous of the shift in the Fermi energy due
to impurities, which determines the voltage difference at
equilibrium between regions of different dopage level. The
table hereafter, Table 1, summarizes the corresponding
quantities in the nano-channel and SC analogy.

Fig. 9 (a) Sketch of the electrostatic potential in a charged slit with

thickness h: (left) h4 2lD; and (right), ho 2lD, corresponding to Debye

layer overlap. (b) A charged nanochannel, with thickness h and length L,

connects two reservoirs R1 and R2. In the situation of Debye layer

overlap, a Donnan potential VD builds up along the nanochannel.
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The Donnan potential and Debye layer overlap have many
implications on nanofluidic transport.

2. Ion transport and PNP equations. A classical framework
to discuss ion transport in narrow pores is the so-called
Poisson-Nernst-Planck (PNP) equations. This simplified
description of ion transport in strongly confined channels is
based on the coupled diffusion-electro-convection of the
ions.119

As in Fig. 9, the channel thickness is assumed to be small
compared to the Debye length, h { lD, so that ion concen-
trations are assumed to be uniform across its thickness. The
ion fluxes J, (per unit surface) then takes the form

J, = &D,qxr,(x) , m,er,(x)(&qxV)(x) (35)

where D, and m, are related by the Einstein relationship,
D, = m,kBT; x is along the direction of the channel. Note that
for simplicity, a single salt and monovalent ions are considered
here. A local version of the electroneutrality, eqn (33), may be
made along the pore:

rþðxÞ & r&ðxÞ ¼
2SðxÞ

h
ð36Þ

Finally at the pore entrance and exit, a Donnan electric
potential drop builds up, along the description given above,
see eqn (34).

To illustrate further this approach, we consider the trans-
port through a single nanochannel, as sketched in Fig. 9(b). At
equilibrium the two reservoirs, R1 and R2, have the same
electric potential and salt concentration, associated with a
uniform Donnan potential along the channel. Now if
an electrostatic potential drop DV or a salt concentration
difference Drs is imposed between the reservoirs, ion fluxes
will build-up so as to relax towards equilibrium.

In the stationary state, the ion flux is spatially uniform, so
that one may solve eqn (35)–(36) for the ion densities
and electrostatic potential. This allows the current
I = Ae(J+ & J&) and total ion flux Ft = A(J+ + J&) to
be computed, with A the cross sectional area. In general, the
relationships I(DV,Drs), Ft(DV,Drs) are non-linear.

However, in the limit of small DV and Drs, a linear
relationship can be written in general between the ionic fluxes
and corresponding thermodynamic ‘forces’:121,122

I
Ft

$ %
¼ A

L
K mK
mK meff

$ %
&DV

&kBTD½logrs.

$ %
ð37Þ

with A the cross sectional area of the channel and D[log rs] =
Drs/rs. Note that due to Onsager (time reversal) symmetry, the
non-diagonal coefficients of the matrix are equal.121,122

The coefficients of the above matrix can be calculated within
the PNP framework. PNP equations are solved analytically for
small potential and concentration drops, leading to the
following expression for the various coefficients in the matrix,
eqn (37):

K ¼ 2me2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2s þ
S
h

" #2
s

meff ¼ 2m'

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2s þ
S
h

" #2
s

mK ¼ em' 2S
h

ð38Þ

We assumed here that ions have the same mobilites m, = m.
The cross effects, associated with the mobility mK, originate
in the dependence of the Donnan potential on the salt
concentration.
Let us conclude this part with a few remarks:
0 First one should realize that a number of assumptions are

implicitly made in writing PNP equations. In particular the
ions are treated as a perfect gas and correlations between ions
along the channel are neglected. This may become problematic
in strongly confined situations where single file transport (of
the solvent) and strong unidirectional electrostatic correlations
should build up. As an example, proton transport in single
file water has been shown to involve a highly-cooperative
mechanism.120 However these limitations are restricted to
single file transport in molecular channels, and should not be
a limitation for pore size larger than a nanometer. Further-
more the PNP model is interesting to explore as a guiding line,
in the sense that it provides a rather correct physical idea of the
(complex) electro-diffusion couplings.
0 Furthermore, we may pursue the analogy discussed above

between nanochannels and doped SC (see Table 1), and
extend the discussion to transport phenomena. Indeed the
Poisson–Nernst–Planck equations, eqn (35), are formally
identical to the phenomenological transport equations for
electrons and holes in SC. Thus, as long as electrical and
concentration fluxes only are allowed, nanofluidic devices can in
principle reproduce standard SC-based components, such as
diodes and transistors. The nanofluidic diode for instance is
based on the properties of a PN junction, i.e. the junction
between two regions with different doping: according to
the equivalence table, Table 1, its nanofluidic equivalent
corresponds to two nanochannels with different surface charge
S/h. We will discuss below (sub-section 5) some recent findings
confirming the pertinence of this analogy.
0 However one should keep in mind that the transport

analogy between fluids and electrons breaks down in the
presence of hydrodynamic flow. Actually, PNP equations
introduced above do not take into account convective
contributions. In a fluidic system, a flow is indeed expected
to occur in nanochannels as soon as a voltage drop is applied
to its end, due to the body force acting on the mobile charges,
but also under a pressure gradient (hydrostatic or osmotic).

Table 1 Equivalence table for corresponding quantities in doped
semiconductors and nano-channels

Nanofluidics Semi-conductors

r& negative ions
concentration

rn electron density in the conduction
band

r+ positive ions
concentration

rp holes density in the conduction
band

rs electrolyte concentration ni carriers density in the intrinsic SC
Surface charge 2S/h Impurities (doping) concentration
Donnan potential Shift of the Fermi level
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This is for example the source of electro-osmotic or streaming
current contributions discussed above. In contrast, SCs can
not flow—quite obviously—under an applied electric field and
may only deform elastically. This is therefore a limitation to
the above analogy.

In the case of a strongly confined regime with a large
slippage at wall, the hydrodynamic contribution to the ion
flux could well become dominant. Such a convection contribution
should therefore be added in the form J,conv = vf ' r,, where
vf is the water velocity. The water velocity is in turn coupled to
(electric) body forces via the momentum conservation
equations, in practice the Navier–Stokes equation in its
domain of validity. Altogether, the hydrodynamically induced
cross phenomena, i.e. electro-osmosis, streaming currents,
diffusio-osmosis,. . . (as well as bare osmosis), can be summarized
at the linear level in terms of a symmetric transport matrix, in
a form similar to eqn (37). This matrix relates linearly the
fluxes to thermodynamic forces at work.122–124 These phenomena
have been discussed extensively in the context of membrane
transport but generalize here to transport in nanofluidic
channels.

More generally the coupling of the ion transport to the fluid
transport thus opens the route to new applications in nano-
fluidic devices, with a richer phenomenology than in SC
electronics.

We now illustrate the above concepts in a few practical
situations.

3. Permselectivity. As a first example, we consider the
permeability of nanopore to ions. It was first shown by Plecis
et al.2 that nanochannels exhibit a selective permeability
for ion diffusive transport, see Fig. 10(a): ions of the same
charge as the nanochannel surface (co-ions) exhibit a lower
permeability, while ions of the opposite charge (counter-ions)
have a higher permeability through the nanochannel.

This charge specific transport is a direct consequence of a
non-vanishing Donnan potential in the nanochannel (and
Debye layer overlap). As pointed out above, Fig. 9, counter
ions exhibit a higher concentration in the nanochannel as
compared to that of a neutral species, r+ 4 rn, while co-ions
have correspondingly a lower concentration, r& o rn.

The diffusive flux of counter-ion will be accordingly larger
than its expectation for neutral species, and vice versa for
co-ions. This leads therefore to a charge-specific effective
diffusion coefficient Deff for the co- and counter- ions.

Following Plecis et al.,2 the effective diffusion coefficient is
defined according to the identity

J, ¼ &D
Dr,
L

/ &Deff
Dr
L

ð39Þ

taking into account the fact that the local concentration in the
nanochannel differs from the one imposed at the two ends of
the reservoir. The linearized Poisson–Boltzmann equation is
then used to calculate the ion concentration in the slit, r,, as:

b, ¼
!r,ðxÞ
rðxÞ

¼ 1

h

Z

slit
dz exp½1eVðzÞ=kBT .

Deff=D ¼ b,

ð40Þ

with !r,(x) the (local) ion concentration in the nano-channel,
averaged over the channel width h; q the ion charge; r(x) the
local salt concentration in the absence of electrostatic inter-
actions (fixed by the salt concentration in the reservoirs); and
V(z) the electrostatic potential across the channel, for which
Plecis et al. used a (linearized) Poisson–Boltzmann expression.
A very good agreement with experimental results is found, as
shown in Fig. 10, showing that this exclusion–enrichment
picture does capture the essential ingredients of the ion
diffusive transport. Note that using the Donnan description
above, one may furthermore approximate the electrostatic
potential by its Donnan expression in eqn (34). This leads to
an analytical expression for b, as

b, ¼ r,
r1

" #1=2

ð41Þ

where, as shown in eqn (34), r, ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2s þ S

h

& '2q
, S

h. This
expression reproduces the results in Fig. 10.
Finally, one should note however that due to the difference

in ion permeability, a charge separation will build up between
the two ends of the channel. This leads therefore to the
creation of a reacting electric field along the channel, which
will compensate dynamically for this charge separation.2

This points to the complex couplings associated with charge
transport in nanochannels. More experimental and theoretical

Fig. 10 Top Variation of the relative permeability of various probes

with different charges, versus ionic strength. The experimental results

are compared to theoretical fittings obtained with eqn (40) (dotted

lines). Bottom Concentration profiles of counter- and co-ions, r,, for a
given salt concentration drop Dr between the two ends of the

nanochannel. The dotted line represents the linear concentration

profile for noninteracting diffusing species, whereas plain lines show

the ion profiles in the nanochannel. Adapted from ref. 2.
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work is certainly in order to get further insight in these
phenomena.

4. Pre-concentration. Along the same lines, another
consequence of Debye layer overlap is the ‘pre-concentration’
phenomenon, which was first observed by Pu et al.,3 and
others.125 Instead of a concentration drop as above, a voltage
drop is applied along the nanochannel. It is then observed that
ions enrich at one end and deplete at the other end. This
phenomenon is illustrated in Fig. 11.

As above, a key point underlying the phenomenon is that
ions of the opposite sign to the channel’s surface, counter-ions,
are more heavily transported than co-ions. This will create an
enriched/depleted zone for both ions at the two ends of the
channel.

This phenomenon has attracted a lot of interest, due in
particular to its potential applications in the context of
chemical analysis, for which it would provide a very interesting
way of enhancing the sensitivity of detection methods.

At a basic level, the origin of preconcentration is a ‘‘cross
effect’’ as introduced in eqn (37): an electric potential drop DV
leads to a flux of ions (Ft), as quantified by the cross-mobility
mK. According to the PNP result for mK (mK = em ' 2S/h), this
cross effect is thus a direct consequence of confinement and the
existence of surface charges. Accordingly the magnitude of its
effect, as compared e.g. to the diffusive flux, depends on the
Dukhin number, see eqn (38).

But the detailed mechanisms underlying the preconcentration
involve non-linear couplings between the various transport
processes of ions in the nanochannel, which are quite complex
to rationalize. A systematic description of the phenomenon
was proposed by Plecis et al. in ref. 126, revealing the existence
of various preconcentration regimes. We refer to ref. 40 for a
detailed discussion on the mechanisms underlying this process.

5. More complex functionalities: nanofluidic diodes. The
analogy with transport in semiconductors quoted above
suggests that more complex nanofluid transport phenomena
can be obtained in the regime of Debye layer overlap.

We discuss here the analog of a PN junction in SC
transport. Using the equivalence table, Table 1, a PN junction
corresponds for nanofluidic transport to a nanochannel
exhibiting a disymmetric surface charge along its surface.

Such a nanofluidic diode device has been developed by
Karnik et al.,6 following a previous work by Siwy et al. in a
different pore geometry.7 This is illustrated in Fig. 12 from
ref. 6. The surface of a nanochannel is coated with two
different surface treatments (half with avidin, half with biotin),
leading to a surface charge contrast along the two moieties of
the channel, Fig. 12 (left). Accordingly the current versus
applied electric potential drop characteristics is found to
exhibit an asymmetric shape: as in a classical diode, the
current passes only in one direction. Similar asymetric I–V
curves are obtained for pores with asymmetric geometries, like
conical pores obtained by track–etch techniques.7

At a more quantitative level, Karnik et al. discussed the
effect on the basis of the PNP equations discussed above,
under the assumption of local electroneutrality. In the present
disymmetric case, Karnik et al. solve numerically these PNP
equations for an applied potential drop at the ends of the
pore.6 Solutions are shown in Fig. 12, demonstrating that the
PNP framework is indeed able to capture the transport
rectification measured experimentally.
This diode behavior can also be discussed in the context of

the analogy with semiconductor transport that we put forward

Fig. 11 Two micro-channels filled with fluorescent probes are connnected by a nanochannel (a). After an electric field is applied across the

nanochannels, an ion-enrichment and ion-depletion occurs at each end of the nanochannel (b)–(e). Figures (a) to (e) show the evolution of the

fluorescence in the microchannel versus time (from 0 to 20 s). The probe used was (A) fluorescein, (B) rhodamine 6G. From ref. 3.

Fig. 12 Left (a) A nanofluidic diode is fabricated by patterning a

nanochannel with different coating on its two moieties (avidin and

biotin here). (b) Epifluorescence image of the fabricated nanofluidic

diode, showing fluorescently labeled avidin in half the channel. Scale

bar 20 mm. Right Current versus applied voltage. Symbols are experi-

mental data, while the solid lines are theoretical predictions using a

PNP transport model. From ref. 6.
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above. The geometry described in Fig. 12 is indeed equivalent
to that of a classical PN junction, corresponding to two
regions with different doping. In the present case of a nano-
fluidic diode, the doping contrast between the P and N regions
is associated with the different surface charge between the two
moieties of the nanochannel. The diode effect in PN junctions
is classically interpreted in terms of the Space-Charge Zone at
the interface between the two regions with different doping.
An approximate solution of the PNP equations can be
proposed and leads to a rectified I–V characteristic which
takes the form of the so-called Shockley equation127

I ¼ IS exp
eV

kBT

$ %
& 1

" #
ð42Þ

where IS is the so-called saturation current. This expression is
expected to describe well the blocking to non-blocking
transition of the junction, i.e. for moderate eV/kBT. However
this expression strongly overestimates the current at large
eV/kBT for which a full solution of the PNP equations is
needed.

In the Shockley equation, eqn (42), the saturation current is
expressed in terms of the donor–acceptor densities, rA and
rD, as

IS ( eAn2i
Dn

LnrA
þ

Dp

LprD

" #
ð43Þ

where ni is the carrier density, Dn, Dp the diffusion coefficients
of electrons and holes, and Ln, Lp the length of the P and N
regions. Using the equivalence table, Table 1, one may convert
this expression for the ionic transport usingDn=D&,Dp=D+,
Ln = Lp = L/2, while rA = 2|SA|/h and rD = 2|SD|/h.

This Shockley expression predicts an I–V curve in
qualitative agreement with the experimental result in Fig. 12.
However, quantitatively it does (very strongly) overestimate
the current for large voltages V, as expected due to the
simplifying assumptions underlying the expression in eqn (42).

The analogy is however interesting to capture the under-
lying physics behind ion rectification in ionic transport. It
allows the prediction of a full zoology of fluidic functionalities,
in line with their SC analogues.

Finally it is interesting to quote that the disymmetry
measured here for I–V characteristics generalizes to other
transport phenomena. For example, Siwy et al. also demon-
strated the occurrence of a disymmetric diffusion of ions
through conical pores.128

Altogether these phenomena demonstrate the richness and
complexity of behaviors obtained in the regime of Debye layer
overlap. This definitely shows the great potential of nano-
fluidics, where further phenomena should emerge in the future
using the benefit of these couplings.

V. Thermal fluctuations

In this section we raise the question of the role of thermal
fluctuations in nanofluidic transport. As a general statistical
rule, when the size of the system decreases, fluctuations play an
increasingly important role. But under which conditions do
they play a role? And which role could they play in nanofluidic
transport?

There are quite a few studies on this question in relation to
nanofluidic transport. One may cite the experimental study of
noise in solid state nanopores by Dekker et al.129 The question
of thermal fluctuations was also discussed in the context of
numerical molecular dynamics simulations of osmotic flow
through carbon nanotubes by Hummer et al.130,131 Simulations
show that—in the single file regime—the flow rate is essentially
governed by thermal fluctuations rather than hydrodynamics.
Hummer et al. proposed a 1D random walk to describe the
nanofluidic water flow in this stochastic regime. Now, it is fair
to remark that fluctuations are indeed expected to play a key
role for single file transport, for which dynamics are highly
correlated.
Aside from this situation, various indications of the role of

thermal fluctuations have been reported, especially in studies
involving capillary dynamics. One may cite the noise effects in
the breakup of fluid nanojets by Moseler and Landman,132,133

the noise assisted spreading of drops,134 and the influence
of thermal noise in thin film dewetting135 in relation to
experiments.136 In these different cases, thermal noise modifies
quite strongly the dynamics, even at relatively large length
scales (up to typically 100 nm in ref. 135). These different
situations can be described within the framework of fluctuating
hydrodynamics,137 in which a random stress tensor is added
to the Navier–Stokes terms. While this approach is indeed
fruitful in describing the role of thermal fluctuations, a general
criterion to quantify the importance of noise is however
lacking.
Here, to illustrate the potential importance of fluctuations,

we consider a simple situation in which an osmotic flow is
driven across a single nanopore. The pore has diameter d and
length L and is impermeable to the solute. The pressure drop
across the membrane is Dp = kBTDc, with c the solute
concentration. Under the pressure drop Dp, a fluid flow is
induced, with mean velocity ū. Assuming NS equations hold
gives !u ) d2

Z
Dp
L . The flow is in the direction of higher solute

concentrations.
Now one may ask the question: could fluctuations yield a

reverse flow, i.e. against the pressure drop, at least for
a short time? This would be clearly a (punctual) violation
of the second law. And what is the minimal size at which
this may occur? A lead to such questions is provided by the
so-called Fluctuation Theorem, which quantifies the
probability of second law violation by fluctuations. This
domain is presently very active, in particular in the context
of single molecule spectroscopy.138 The theorem states that the
probability P(Qt) of finding a value Qt of the amount of heat
dissipated in a time interval t satisfies in a non-equilibrium
state139–141

P(Qt)/P(&Qt) = exp(Qt/kBT) (44)

In the nanofluidic situation, this theorem would thus quantify
the probability of a flow against the osmotic gradient. Let us
compute the order of magnitude for the averaged !Qt in the
stationary state: !Qt E !F ' ū ' t, with F the frictional force
acting on the nanopore surface. One has F = pdLsw with sw
the stress at the wall given by sw B dDp/L. To fix ideas, we
compute the amount of heat dissipated over a time needed for
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a molecule to pass through the whole pore, i.e. t = L/ū.
Altogether this gives

Qt ) Dp'V ð45Þ

with V ¼ p
4d

2L the volume of the pore. According to eqn (44),
violations of the second principle are more likely to occur
when !Qt is of the order of the thermal energy. Putting in
numbers, if we choose Dc = 1 M (close to physiological
conditions), then the condition Qt B kBT is obtained for
nanometric volumes, i.e. for a pore with a size (diameter,
length) typically in the nanometer range. This is indeed
typically the order of magnitude for the size of
biological pores.

The occurrence of such ‘counter flow’ fluctuations has
actually been observed in MD simulations of osmotic flows
through carbon nanotube membranes by Hummer et al.,130

and a stochastic model was proposed to account for the water
transport across the tube. The above analysis thus fixes the
limit where fluctuations starts to be predominant over the
mean behavior.

Finally we note that one may perform the same estimate for
a different situation of an electric current induced by an
electrostatic potential drop DV. Assuming a bulk conductance,
the dissipated heat is estimated under quite similar terms
as !Qt B eDV ' rSV, with rs the salt concentration. Again
the condition Qt B kBT is achieved for nanometric volumes.

These results point to the crucial role of fluctuations in pores
with nanometric size. This is the typical scale of a biological
pore: it is then interesting to point out that biological pores are
working at the edge of second law violation ( !Qt B kBT).

These questions would deserve further experimental and
theoretical investigations.

VI. Discussion and perspectives

In this review, we hope to have convincingly shown that
nanoscales do indeed play a key role in fluidics. A broad panel
of length scales ranging from the molecular to the micrometric
scales leads to a rich ensemble of nanofluidic phenomena.
While the domain of validity of Navier–Stokes equations
was shown to extend down to the nanometer scale, specific
transport phenomena show up due to the complex couplings
which build up between flow and ionic transport, electro-
statics, surface dynamics, etc.

We focused in this review on the behavior of fluids at the
nanoscale. But in doing so we omitted several important topics
in the discussions, however strongly connected to nanofluidics
questions.

This concerns in particular the field of transport of (macro)-
molecules, polymers, polyelectrolytes or biological molecules
(DNA, RNA) through nanopores. This involves either
biological nanopores, like the widely studied a-haemolysin,
or artificial solid-state nanopores made by ionic drilling of
membranes.142 Starting from the pioneering work by
Bezrukov et al. and Kasianowicz et al.50–52 there has been
a thorough exploration of the translocation mechanisms of
macromolecules in tiny pores,143,144 with important implications
for the understanding of the biological translocation process
and potentially for single molecule analysis. This domain is

now rapidly expanding and we refer to the recent review by
Dekker for further reading.142

Another aspect that we left aside is the question of
nano- and micro-structured surfaces, in line with the recently
developed super-hydrophobic surfaces exhibiting the Lotus
effect. Superhydrophobic coatings can lead to huge slippage
effects, with slip lengths in the micrometer range,46,47,145,146 as
well as other dynamic phenomena, such as hydro-elastic
couplings at the superhydrophobic interface.147 Such surfaces
offer the possibility to considerably enhance the efficiency of
transport phenomena in particular in the context of slip
enhancement discussed above. For example, as we pointed
out in the text, a massive amplification, by a factor up to
104 (!), is predicted for diffusio-osmosis on superhydrophobic
surfaces, which offers the possibility to devise efficient salt
pumps.114 The underlying coupling mechanisms remain
however subtle, and this enhancement was shown for example
to break down for electro-osmotic transport.114,148 The
implications of nano- and micro-structuration on fluidic
transport is still at its infancy and remains to be thoroughly
explored. It offers the possibility of coupling fluid dynamics
over the scales, from the nano- to the micro-scales, and even to
larger macroscopic scales.149

Furthermore, beyond these questions, it is interesting to
note that nanofluidics offers the possibility of attacking
old questions with new points of views, and new control
possibilities. We quoted the amazing flow permeability
measured by carbon nanotube membranes. While this
performance remains to be understood—and possibly investigated
at the individual nanotube level—this opens up very promising
application in the field of energy, in particular for portable
energy sources. Such membranes indeed offer the possibility of
very efficient conversion of hydrostatic energy to electrical
power at small scales,104,105 see also ref. 150. As we have
discussed above, low (nanoscale) friction at surfaces considerably
amplifies electrokinetic processes, such as electro-osmosis or
streaming currents.100,103 The latter phenomenon is able to
produce an electrical current from a pressure drop.151,152 On
this basis it was argued104,105 that the efficiency of this
mechano-electric transduction increases considerably for
slippery walls: reasonable values suggest an increase of the
energy conversion efficiency from a few percent to 30% for
slippery surfaces! While the tremendous effect of low surface
friction and slippage on charge transport has been recently
confirmed experimentally,103 its expected impact on mechano-
electric energy conversion has not received experimental
confirmation. Extrapolating with the results obtained with
the nanotube membranes, this power conversion efficiency
increases to close to 100% (due to the expected extremely
weak dissipation) and this amazing prediction would lead to a
production of electrical power of several kW m&2 for a
pressure drop of 1 bar:104 this is an impressive result, which
has not been confirmed up to now. While such predictions
have to be taken with care, they strongly suggest exploring the
role of nanofluidics in the context of energy conversion. Such
nanofluidic energy conversion devices have a priori the poten-
tial to power larger scale systems (for example in cars or
portable devices), due to their high power density and low
weight.1
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An alternative field of application for progress made in
nanofluidic transport is desalination. Indeed, as half of
humanity has no immediate access to potable water, desalination
of seawater has emerged over recent years as an alternative
solution to developing fresh water. Reverse osmosis is one of
the techniques used in this context, for example in the
Ashkelon plant in Israel:153 seawater is pushed through a
membrane impermeable to the salt. Such a process is expensive
(typically around 0.5 $/m3 for the Ashkelon plant153), due—
among other factors—to the energy required for this operation.
The possibility of reducing this energy by using a considerably
more permeable membrane should therefore have a direct
impact on the cost of produced water. This is a potential
application of membranes made of carbon nanotubes which,
as we discussed,9,35,36 exhibit a permeability 2 to 3 orders
of magnitude higher than those with micropores, a fully
unexpected and still debated result. Another question for the
desalinated water is the mineral composition of the produced
water which—if not controlled—could have a deep, negative,
impact on agriculture and health. For example the concentration
of boron (B), which is toxic to many crops, is high in seawater,
and requires to be partially eliminated by desalination
post-treatments.153 Reversely, desalination removes some ions
which are essential to plant growth, such as Mg2+ or SO2!

4 .
There is therefore a potential need for better selectivity of
filtration.

Achieving selectivity similar to biological channels, such as
aquaporins,8,11,12 is still out of reach, but nanofluidics has a
major role to play in this context in order to find the key
tuning parameters and architecture. Such applications may
still be years away, but the basic principles underlying their
operation will develop in the years to come.
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Osmosis, from molecular insights to large-scale
applications
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Osmosis is a universal phenomenon occurring in a broad variety of processes and fields. It is the

archetype of entropic forces, both trivial in its fundamental expression – the van ’t Hoff perfect gas

law – and highly subtle in its physical roots. While osmosis is intimately linked with transport across

membranes, it also manifests itself as an interfacial transport phenomenon: the so-called diffusio-

osmosis and -phoresis, whose consequences are presently actively explored for example for the

manipulation of colloidal suspensions or the development of active colloidal swimmers. Here we give a

global and unifying view of the phenomenon of osmosis and its consequences with a multi-disciplinary

perspective. Pushing the fundamental understanding of osmosis allows one to propose new

perspectives for different fields and we highlight a number of examples along these lines, for example

introducing the concepts of osmotic diodes, active separation and far from equilibrium osmosis, raising

in turn fundamental questions in the thermodynamics of separation. The applications of osmosis are

also obviously considerable and span very diverse fields. Here we discuss a selection of phenomena and

applications where osmosis shows great promises: osmotic phenomena in membrane science (with

recent developments in separation, desalination, reverse osmosis for water purification thanks in

particular to the emergence of new nanomaterials); applications in biology and health (in particular

discussing the kidney filtration process); osmosis and energy harvesting (in particular, osmotic power

and blue energy as well as capacitive mixing); applications in detergency and cleaning, as well as for oil

recovery in porous media.

1 Introduction

From the etymological point of view, osmosis denotes a ‘‘push’’
and indeed osmosis is usually associated with the notion of
force and pressure. Osmosis is a very old topic, it was first
observed centuries ago with reports by Jean-Antoine Nollet in
the 18th century. It was rationalized more than one century
later by van ’t Hoff, who showed that the osmotic pressure took
the form of a perfect gas equation of state. In practice, an
osmotic pressure is typically expressed across a semi-permeable
membrane, e.g. a membrane that allows only the solvent to pass
while retaining solutes. If two solutions of a liquid containing
different solute concentrations are put into contact through
such a semi-permeable membrane, the fluid will undergo a
driving force pushing it towards the reservoir with the highest
solute concentration, see Fig. 1. Reversely, in order to prevent
the fluid from passing through the membrane, a pressure has to be applied to the fluid to counteract the flow: the applied

pressure is then equal to the osmotic pressure.
Osmosis is therefore extremely simple in its expression. Yet

it is one of the most subtle physics phenomenon in its roots – it
resulted in many debates over years.1,2 Osmosis also implies
subtle phenomena, in particular as a prototypical illustration
for the explicit conversion of entropy of mixing into mechanical

Fig. 1 Key manifestation of osmosis. A semi-permeable membrane allows
transport of water upon a solute concentration difference (in red). The flow of
water is directed from the fresh water reservoir to the concentrated reservoir.
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work. In spite of centuries of exploration, osmosis as a field
remains very lively, with a number of recent breakthroughs
both in its concepts and applications as we shall explore in this
review. A simple reason for the importance of osmosis is that it
is a very powerful phenomenon: giving just one illustrative
number, it is amazing to realize that a concentration difference of
B1.2 molar, which corresponds roughly to the difference between
sea and fresh water (and can be easily achieved in anyone’s
kitchen), yields an osmotic pressure of B30 atmospheres. This
is the hydrostatic pressure felt under a 300 m water column!
Osmosis has potentially a destructive power, in particular in soft
tissues and membranes, with possible fatal consequences.3 This
explains actually why it is also an efficient asset for food preserva-
tion (such as fish and meat curing with dry salt).

Osmosis is accordingly also a key and universal phenomenon
occurring in many processes, ranging from biological transport in
plants, trees and cells, to water filtration, reverse and forward osmosis,
energy harvesting and osmotic power, capacitive mixing, oil
recovery, detergency and cleaning, active matter, to quote just a few.

The literature on osmosis and its consequences is accord-
ingly absolutely huge,‡ and it may seem hopeless to cover in a
single review all aspects of the topic with an exhaustive discus-
sion of all possible applications. Also, such a comprehensive
list would probably be useless for readers who want to catch up
with the topics related to osmosis. In writing this review, we
thus decided to rather present a tutorial and unified perspec-
tive of osmosis, obviously with personal views, avoiding exhaus-
tiveness to highlight a number of significant questions
discussed in the recent literature. The review will therefore
explore the fundamental foundations of osmosis, emphasizing

in particular the – sometimes subtle – mechanical balance at
play; then report on more recent concepts and applications
related to osmosis which – in our opinion – prove promising for
future perspectives. We will accordingly put in context phenom-
ena like diffusio-osmosis and -phoresis, as well as ‘‘active’’
(non-equilibrium) counterparts of osmosis, which were realized
lately to play a growing role in numerous applications in
filtration and energy harvesting.

The review is organized as follows. We start with some basic
reminder of the fundamentals of osmosis in terms of equili-
brium and non-equilibrium thermodynamics of the underlying
process. We further highlight simplistic views clarifying the
mechanical aspects of osmosis. We then discuss membrane-
less osmosis and the so-called diffusio-osmotic flows. We then
show how such phenomena may be harnessed to go beyond the
simple views of van ’t Hoff. We then explore the transport of
particles under solute gradients, diffusio-phoresis, and discuss
how this phenomenon can be harnessed to manipulate colloi-
dal assemblies. And we finally illustrate a number of applica-
tions for the introduced concepts, from desalination, water
treatment, the functioning of the kidney, blue energy harvest-
ing, etc. We conclude with some final, brief, perspectives.

2 Osmosis: the van ’t Hoff legacy
2.1 A quick history of osmosis

We start this review with a short and non-exhaustive journey
through time in order to highlight how a complete under-
standing of osmosis emerged over time. We refer e.g. to ref. 4
for a more detailed historical review. The first occurrence of the
term ‘‘osmosis’’ and clear observation of its effects - beyond the
seminal work of Nollet – is reported at least as early as in the

Sophie Marbach

Sophie Marbach is a post-doctoral
fellow at the Courant Institute of
New York University. She obtained
her PhD from Ecole Normale
Supérieure, Paris. Her main
interest is to investigate out-of-
equilibrium driven processes at
the interface of biology, physics
and chemistry at the small
scales. She uses a number of
theoretical and numerical tools
with strong connections to
experiments to answer open
fundamental questions and to

help building artificial devices. For example she recently showed
how to draw inspiration from the human kidney to build an
innovative filtration device.

Lydéric Bocquet

Lydéric Bocquet is director of
research at CNRS and joint
professor at the Ecole Normale
Supérieure, Paris. His research
interests are mainly curiosity
driven and extend to domains at
the interface of fluid dynamics, soft
condensed matter and nanoscience.
He combines experiments, theory
and simulations to explore the
intimate mechanisms of fluid
interfaces from the macroscopic
down to the molecular level. His
recent interests aimed at taking

benefit of the unexpected fluid transport behavior occurring at the
nanoscales to propose new routes for energy harvesting and
desalination. He also has a strong interest in every-day life science.
He received several awards including the Friedrich Wilhelm Bessel
prize of the von Humboldt foundation in 2007 and Advanced Grants of
the European Research Council in 2010 and 2018. http://www.phys.
ens.fr/Blbocquet/.

‡ The word ‘‘osmosis’’ in Web of Science results in tens of thousands of referenced
papers on this topic.

Review Article Chem Soc Rev

Pu
bl

is
he

d 
on

 2
2 

M
ay

 2
01

9.
 D

ow
nl

oa
de

d 
by

 S
yd

da
ns

k 
U

ni
ve

rs
ite

ts
bi

bl
io

te
k 

on
 5

/2
2/

20
19

 1
0:

25
:0

1 
A

M
. 

View Article Online

http://www.phys.ens.fr/~lbocquet/
http://www.phys.ens.fr/~lbocquet/
https://doi.org/10.1039/c8cs00420j


This journal is©The Royal Society of Chemistry 2019 Chem. Soc. Rev.

works of Henri Dutrochet in the 1820s.5,6 He observed swelling
events or emptying of pockets driven by the presence of various
dissolved components in water (different sugars in plants,
sperm in slugs. . .). In reference to the greek term ‘‘osmose’’
(meaning ‘‘impulsion’’ or ‘‘push’’) he introduced the vocabulary
‘‘endosmose’’ and ‘‘exosmose’’. Interestingly, Dutrochet served as
a pioneer in linking these different topics by claiming that the
same physical force could be used to describe all these events,5

which is indeed a unique and fascinating feature of osmosis. Yet,
the mechanisms driving osmotic flow were still unclear, and
entangled (or believed to be entangled) with capillary and
electrical effects. In 1854 T. Graham introduced the word
‘‘osmosis’’ building on the work of Dutrochet.7

Interestingly, the distinction between osmosis and pure
diffusion – without a membrane, see Fig. 2 – is not clear from
the beginning. The confusion will grow stronger with the work of
Adolf Fick in 1855,8 where he claims that diffusive motion (Fickian
diffusion) is the driver for osmotic flow (the water concentration
imbalance between the two compartments drives the water flow).
The question of finding whether osmotic flow is diffusion-driven or
not will be an ongoing debate for a century. That diffusion alone
cannot account for osmosis is not widely appreciated. In 1957, the
debate is definitely closed by an experimental visualization of water
flow, using radioactively labeled water molecules9 and verified in
ref. 10. The flows measured were significantly higher than that
expected by pure diffusion.

In 1877, Wilhelm Pfeffer made the first measurements of
osmotic pressure,11 see Fig. 3. At equilibrium, he measured a
rise in the concentrated solution, corresponding to a hydraulic
pressure drop that is equal to the osmotic pressure. He measured
a linear relation between the osmotic pressure and the concen-
tration difference. But also, Pfeffer measured that for each degree
rise in temperature, the pressure would go up by 1/270.12 This fact
was reported to Jacobus Henricus van ’t Hoff by the botanist Hugo

de Vries and van ’t Hoff immediately recognized that 270 was an
approximation of 273 K. Intrigued by this result, he attempted in
1887 to rationalize this linear dependence13 and suggested to
interpret that the osmotic pressure DP was exerted by the solute
particles and equal to the partial pressure that they would have in
gas phase (therefore the term ‘‘osmotic pressure’’):

[. . .] it occurred to me that with the semipermeable barrier all
the reversible transformations that so materially ease the application of
thermodynamics to gases, become equally available for solutions. . .

That was a ray of light; and led at once to the inescapable conclusion
that the osmotic pressure of dilute solutions must vary with temperature
entirely as does gas pressure [. . .].12

then writing

DP = kBTDcs (1)

with kB the Boltzmann constant, T temperature and Dcs the
solute imbalance between reservoirs.

Eqn (1) is today referred to as the van ’t Hoff law, and gives
in practice good agreement for the osmotic pressure measured
between two solutions separated by a membrane permeable
only to the solvent. For a solute imbalance of DCs = 1.2 mol L�1

(corresponding to the ionic strength difference between fresh
and sea water, which is twice – two ions for salt – the typical
concentration 0.6 mol L�1), we find an osmotic pressure of
DP = kBTDCsNA C 30 bar.

At the time, the interpretation of van ’t Hoff gave rise to a
number of debates.1,2 In the following decades a great number of
theories were invented to describe the osmotic phenomenon and
a detailed review of these theories can be found in ref. 14. Among
all these theories, two of them caught a lot of attention. One of
them was the proof of van ’t Hoff’s law using the kinetic theory of
gas to describe the two solutions15 (which was later improved for
multicomponent systems16). The other one is acknowledged today
as the common description of osmosis, and makes use of the
concept of chemical potentials first introduced by Josiah Willard
Gibbs17 (actually introduced as a physical descriptor required to
understand osmosis), that we recall in the next section.

2.2 Thermodynamic equilibrium

We start with the thermodynamic derivation of the osmotic
pressure as proposed by Gibbs. We follow here the clear-cut
presentation proposed in the textbook by Callen,18 which we recall

Fig. 2 Osmosis versus diffusion. (a) Situation where motion of the red
solute particles is governed by diffusion alone (b) osmosis situation, where
motion of the blue solvent particles is driven by osmosis; the solute
particles being ‘‘repelled’’ by the membrane, the membrane exerts an
effective force on the liquid (solute + solvent) that drives solvent flow
towards the highly concentrated reservoir.

Fig. 3 First measurements of osmotic pressure. (a) Schematic of a Pfeffer
cell, the device used by W. Pfeffer to perform the first measurements of
osmotic pressure; (b) osmotic pressure as a function of solute concen-
tration at two temperatures, with experimental data points from W.
Pfeffer11 verifying a linear relation (the lines are a guide for the eye).
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here for the purpose of settling properly the foundations. In
addition to Callen it is also worth reading the rigorous thermo-
dynamic treatment by Guggenheim.19 We consider a composite
system made of two simple reservoirs (left and right) separated by
a rigid wall permeable to component w (usually the solvent) and
totally impermeable to all other components (labelled s1, s2 and
so on). The whole system is in contact with a thermal bath at
temperature T. The solvent is in equilibrium over the whole
system, i.e. over the two reservoirs, while solutes cannot equili-
brate between the reservoirs. Due to the imbalance of solute
fraction between both reservoirs, the solvent cannot keep a
homogeneous pressure across the two reservoirs while ensuring
the equality of chemical potential at equilibrium. An (osmotic)
pressure drop builds up, which the membrane withstands.

Assuming that the solute concentration is dilute, the Gibbs
free energy of a binary system of solvent and dilute solute can
be written as

G T ; p;Nw;Ns1

� �
¼ Nwm0wðp;TÞ þNsm0s ðp;TÞ

þNwkBT ln
Nw

Nw þNs
þNskBT ln

Ns

Nw þNs

(2)

where m0
w(p,T) and m0

s(p,T) are the chemical potentials of the
pure solvent and solute and the last two terms correspond
to the entropy of mixing terms. In the dilute regime where
Ns { Nw the Gibbs free energy simplifies to

G T ; p;Nw;Nsð ÞÞ ¼ Nwm0wðp;TÞ þNsm0s ðp;TÞ

� kBTNs þNskBT ln
Ns

Nw

(3)

and the chemical potential of the solvent may be obtained as
mw = qNw

G

mw(T,p,X) C m0
w(p,T) � kBTX. (4)

with X C Ns/Nw the solute molar fraction. The chemical
potential balance, m(l)

w = m(r)
w , thus writes

mw T ; pðlÞ; 0
� �

� kBT
N
ðlÞ
s

N
ðlÞ
w

¼ mw T ; pðrÞ; 0
� �

� kBT
N
ðrÞ
s

N
ðrÞ
w

: (5)

Noting then that for small pressure drops, mw(T,p(r),0) C
mw(T,p(l),0) + (p(r) � p(l))vw, with vw = qpmw(T,p,0) the molecular
volume, one deduces finally

DP ¼ pðrÞ � pðlÞ ¼ kBT
N
ðrÞ
s

VðrÞ
�N

ðlÞ
s

V ðlÞ

" #
(6)

Introducing the concentration as cs = Ns/V, one thus recovers
the result of van ’t Hoff

DP = kBTDcs. (7)

In the case of several dilute solutes, this generalizes simply to

DP ¼ kBT
N
ðrÞ
s1 þN

ðrÞ
s2 þ :::

V ðrÞ
�N

ðlÞ
s1 þN

ðlÞ
s2 þ :::

V ðlÞ

" #
: (8)

The derivation above is limited to dilute solutes. For arbitrary
molar fractions X of solute/solvent mixtures, the osmotic pressure
is given in terms of the general expression for the pressure,
namely20

PðXÞ ¼ X
@f

@X
� f ½X� þ f ½X ¼ 0�; (9)

with f (X) = F/V the Helmholtz free energy density calculated for a
solute molar fraction X. Deviations from ideality are for example
measured for polymers, where the range of validity of the van ’t
Hoff law decreases with increasing molecular weight.20 Deviations
are also expected for highly concentrated brines or solvent
mixtures, e.g. in the context of solvophoresis, see below ref. 21.

An interesting, and quite counter-intuitive remark is that –
provided it is semi-permeable – the membrane characteristics
do not appear in this thermodynamic expression for the
osmotic pressure. Another puzzling remark is that the osmotic
pressure is a colligative property, i.e. it does not depend on the
nature of the solute (nor that of the membrane), but only on
the concentration of the solute. This is relevant when the
membrane is completely impermeable to the solute, but when
the membrane is only partially impermeable, or when there are
different solutes with different permeation properties, there
may be both a solvent and a solute flux driven by the solute
concentration imbalance (in opposite directions).22–26 The
osmotic pressure is then usually assumed to be reduced by a
so-called (dimensionless) reflection factor, s, which depends
on the specific properties of solvent–membrane interactions
and transport. This requires to go beyond the thermodynamic
equilibrium and consider the detailed mass and solute trans-
port across the membrane, as we now explore.

2.3 Osmotic fluxes and thermodynamic forces

Following the work of Staverman,27 Kedem and Katchalsky derived
a relation between solute and solvent flows through a porous
membrane and the corresponding thermodynamic forces,28 based
on Onsager’s framework of irreversible processes.29,30

As in the previous section, we consider a composite system
made of two simple reservoirs (left and right), containing a
solvent w and a solute s. The reservoirs are separated by a rigid
wall, which is now permeable to all components, but with a
differential permeability between the solute and the solvent.
Obviously, the objective of the membrane is somehow to reject
the solute but the rejection is incomplete here. The whole
system is put in contact with a thermal bath at temperature T.

The entropy production (per unit membrane area A) is
accordingly written as:

F ¼ T

A

dS

dt
¼ � mðrÞw � mðlÞw

� �dNðrÞw
dt
� mðrÞs � mðlÞs
� �dNðrÞs

dt
(10)

with
dN
ðrÞ
i

dt
the flux of molecules of component i per unit area.

The dissipation function of eqn (10) is a product of fluxes
dN
ðrÞ
i

dt
and the corresponding thermodynamic forces, here the differ-
ences in chemical potentials.
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Now, restricting ourselves to ideal solutions for simplicity,
one may write the chemical potential difference as m(r)

i � m(l)
i =

viDp + kBTD ln Xi where Xi is the molar fraction of component i
and vi = (qmi/qp) the molar volume of i. Accordingly,

mðrÞs � mðlÞs ¼ vsDpþ kBT
Dcs
cs

for the solute and mðrÞw � mðlÞw ¼

vwDp� kBT
Dcs
cw

for the solvent (where we used cs { cw).

Eqn (10) then rewrites:

F ¼ � vw
dN
ðrÞ
w

dt
þ vs

dN
ðrÞ
s

dt

!
Dp� 1

cs

dN
ðrÞ
s

dt
� 1

cw

dN
ðrÞ
w

dt

!
kBTDcs

(11)

From the dissipation function in eqn (11), we may thus
identify a new set of forces and fluxes: new forces are �Dp and
�kBTDcs, respectively the hydrostatic pressure and solute
concentration imbalance; new flows are (a) the total volume
flow through the membrane (sum of all flows):

Q ¼ vw
dN
ðrÞ
w

dt
þ vs

dN
ðrÞ
s

dt
(12)

and (b) the excess solute flow (as compared to the solute flow
carried by the solvent) or the exchange flow:

Je ¼
1

cs

dN
ðrÞ
s

dt
� 1

cw

dN
ðrÞ
w

dt
(13)

Under the assumption that the concentration of solute is
small cs { cw, one may thus rewrite Je C Js/cs� Q where Js is the
solute flow.

The framework of irreversible processes assumes a linear
relation between fluxes and forces,30 hereby taking the form

Q

Js � csQ

!
¼ L�

�Dp

�kBTDlogcs

!
: (14)

where L is the transport matrix. Importantly, as we discuss below
and in Section 3.2.2, this matrix is symmetric according to Onsager’s
principle – due to microscopic time reversibility – and definite
positive – due to the second principle of thermodynamics.

The question then amounts to characterizing the transport
coefficients of this matrix. By identifying limiting regimes,
Kedem and Kachalsky rewrote these transport equations in a
more explicit form as28,31–34

Q = �Lhyd(Dp � skBTDcs), (15)

Js = �LDosDcs + cs(1 � s)Q, (16)

where Lhyd = khydA/(ZL) is the solvent permeance through the
membrane with khyd the permeability (with units of a length
squared), A the membrane area, Z the fluid viscosity, and L the
membrane thickness; LD = ADs/L is the solute permeability
with Ds the diffusion coefficient of the solute. Eqn (15) is often
referred to as the Starling equation in the physiology
literature,35 see e.g. ref. 36 and 37. The osmotic pressure
generated by the large scale molecules involved in the body
(complex proteins such as albumin and more) is referred to as the
oncotic pressure. These equations introduce two dimensionless

(numerical) factors: s is the so-called reflection or selectivity
coefficient and os is a solute ‘‘mobility’’ across the membrane –
both of which we discuss in details below.

The Onsager symmetry relations for eqn (14) can be verified
by exploring two limiting cases: (1) the situation where Dp = 0
yields osmotic flow only as Q = sLhydcsDm (using Dm = kBTDcs/cs

in the dilute case); (2) and the situation where Dm = 0 yields
Js � csQ = sLhydcsDp. One obtains therefore [Q/Dm]Dp=0 =
[( Js � csQ)/Dp]Dm=0 and the symmetry of the transport matrix
is indeed verified.

The reflection coefficient and the solute mobility. The
Kedem–Katchalsky equations introduce the reflection coefficient
s mentioned previously and first described by Staverman.27 This
coefficient a priori depends on the relative interactions of the
membrane with the solute and solvent.22,23,38 The Kedem–Katch-
alsky framework also introduces the permeability of the solute
through the membrane via the combination LDos. A fully semi-
permeable membrane corresponds to the case where s = 1 and os =
0: the solute flux vanishes Js = 0 and the pressure driving the fluid
identifies with the van ’t Hoff result DP = kBTDcs. Reversely, a
‘‘transparent’’ membrane which is fully permeable to both solute
and solvent correspond to s = 0 and os = 1: no osmotic pressure is
expressed and the solute flux reduces to Fick’s law.

In the intermediate case, the membrane is partially perme-
able to the solute and we expect 0 o s o 1, see Fig. 4. As an
example, in a pure Nafion membrane about 18 mm thick, the
reflection coefficient between water and KCl salt was measured
as s = 0.82 (at concentration 0.25 mol L�1).39

Interestingly, cases with negative reflection coefficient,
so 0, were reported. This situation is often termed anomalous
osmosis40,41 and it corresponds to situations where the solute is
more permeable than the solvent. We will discuss in Section 4
various examples where such a situation with reversed osmosis
occurs.

The specificity of the membrane and its interaction with the
solute molecules actually come into play into this reflection
coefficient s. A number of models have tried to rationalize the
dependence of s on the chemical and physical properties of the
components. The first models took into account steric effects
(similar to Fig. 4), where in fact the volume accessible to the
solute inside the pore would differ (because of its typically
larger size) than that accessible to the solvent.42–44 The next

Fig. 4 Examples of reflection coefficient based on steric exclusion. In (a)
the blue solvent only may traverse the pores; while in (b) the red solute
particles may also traverse; their permeability through the pores is how-
ever small since the accessible volume in the pore for the red solute
particles is smaller than that for the blue solvent. (c) The membrane is now
fully permeable to all species, and therefore diffusion dominates and
solute particles move towards the low concentration side.
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generation of models sought to include as well hydrodynamic
interactions, investigating how friction induced by the proximity
of the solute to the pore walls would reduce permeability.45,46

Anderson also studied interactions with the pore walls and
adsorption of the solute in the pore.38 Similarly, the ‘‘mobility’’
coefficient os entering the transport equations will depend both
on the solute–membrane interactions and transport parameters.
A first, naive, estimate is to identify this coefficient with the
partition coefficient of the solute between the membrane and
the reservoirs at equilibrium, Ks = cm

s /cbulk
s , so that os = Ks.

31

But this estimate does not account for the complex transport
processes occurring within the membrane. Interestingly, the
non-dimensional coefficients os and s are expected to be linearly
related,31 as 1 � s p os, a result that we will recover below in a
specific case.

Altogether, a complete determination of the reflection and
mobility coefficients requires to implement a microscopic
description of the membrane–fluid interactions. We will
explore below and in Section 3 various situations highlighting
how playing with interactions may lead to advanced osmotic
transport behavior.

2.4 Mechanical views of osmosis: a tutorial perspective

Beyond the general formalism introduced above, it is interesting
to get further fundamental insights into the microscopic
mechanisms which underlie osmosis. In particular it is of
interest to get some intuition on the mechanical force balance
associated with the osmotic pressure. To do so, we will reduce
the microscopic ingredients of osmosis to their minimal func-
tion and this description has merely a tutorial purpose. Still it is
very enlightening in order to understand how the connection
between ‘‘microscopic’’ parameters and thermodynamic forces
builds up. Such mechanistic views of osmosis also allow to
envision advanced osmotic phenomena, beyond the van ’t Hoff
perspective. Alternative approaches with similar illustrative
objectives were proposed for one-dimensional single file channels,
see ref. 47 and 48.

We pointed out above that the van ’t Hoff law for the osmotic
pressure does not involve the membrane properties per se,
provided that it is semi-permeable. So it is tempting to replace
the membrane by a crude equivalent, namely an energy barrier
acting on the solute only, say U(x) (assuming for simplicity a
unidimensional geometry) – see Fig. 5. This approach, which
captures the minimal ingredients at play in osmosis, was first
introduced by Manning49 in the low concentration regime, and
generalized more recently to explore the osmotic transport
across perm-selective charged nanochannels50 or in non-linear
regimes at high solute concentrations.51 One may note that such
a potential barrier can also be physically achieved; for example, it
may be generated from a nonuniform electric field acting on a
polar solute in a nonpolar solvent,52 or it can represent the
nonequivalent interactions of solute and of solvent particles with
a permeable membrane, e.g., charge interactions.50,53

Let us first consider the ideal case where the barrier’s
maximum is high, i.e. Umax c kBT, so that the solute cannot cross
the barrier: this is the perfectly semi-permeable case. In both

reservoirs the solute is at equilibrium and the solute profile follows
accordingly the Boltzmann relation

cðrÞ=ðlÞs ðxÞ ¼ cðrÞ=ðlÞs � e
�UðxÞ
kBT (17)

Now, a key remark is that the force on a fluid element of
volume dt (consisting of the solvent and solute mixture)
will write

df (x) = c(r)/(l)
s (x) � (�qxU(x))dt. (18)

with dt = Adx; A is the membrane area. The total force per
unit area acting on the fluid is accordingly integrated over x

FT

A
¼
ð1
0

dx cðrÞs e
�UðxÞ
kBT � �@xUðxÞð Þ

þ
ð0
�1

dx cðlÞs e
�UðxÞ
kBT � �@xUðxÞð Þ

(19)

(where we arbitrarily put x = 0 at the position of the maximum
of the energy barrier), leading immediately to

FT

A
¼ kBT � ½cðrÞs � cðlÞs � � DP (20)

where we neglected terms behaving as exp[�Umax/kBT]. Alto-
gether this simple approach allows one to retrieve the van ’t
Hoff law. It highlights the mechanical origin of osmosis: as is
transparent from the previous derivation, the osmotic pressure

Fig. 5 The physical force driving osmosis is interaction of the solute with
the membrane. (a) The membrane exerts a repulsive force (red arrows) on
the solute particles (red) that creates a pressure gradient (or a void on the
immediate left hand side of the membrane) that drives the flow (blue
arrows of blue solvent particles). (b) Mechanical view of osmosis: the
partially permeable membrane may be viewed as an energy barrier for the
solute molecules (in red) that they have to overcome in order to traverse
the membrane.
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results from the fact that the reservoir containing more solute
particle will generate a higher repelling force on the fluid than
from the other reservoir: accordingly a fluid flow will be
generated from the low to the high concentrations, hence
diluting the more concentrated reservoir.

While the above approach is instrinsically at equilibrium,
it can be easily generalized to a non-equilibrium situation
by releasing the assumption of an (infinitely) high energy
barrier: in this case the solute can cross the ‘‘membrane’’
between the two reservoirs at a finite rate, see Fig. 5,
generating a solute flux. We further assume that the membrane
is fully permeable to the solvent (no energy barrier acting on it),
with a permeance Lhyd relating the fluid flux Q to the pressure
drop Dp in the absence of a concentration difference: Q =
Lhyd(�Dp).

The stationary dynamics of the system is described by the
coupled set of equations for the solute diffusive dynamics –
Smoluchowski equation – and fluid transport – Navier–Stokes
equation. In the 1D geometry described above, the stationary
solute concentration cs(x) obeys a Smoluchowski equation:

0 = qtcs = �qxjs = �qx(�Dsqxcs + lscs(�qxU) + vxcs), (21)

where js = Js/A is the solute flux per unit surface, Ds is the solute
diffusion coefficient, ls = Ds/kBT the mobility and vx the local
fluid velocity. We will further assume a low Péclet number,
Pe = vxL/Ds { 1, such that the convective term of eqn (21) is
negligible. This is valid for low permeability (nanoporous)
membranes. The full derivation including the convective
term was considered in ref. 49. Since the solute flux across
the membrane Js is constant in time and spatially uniform,
eqn (21) is explicitly solved with respect to the concentration as:

csðxÞ ¼ cðrÞs � Dcse�bUðxÞ
Ð L=2
x dx0 exp þbUðx0Þ½ �Ð L=2
�L=2dx

0 exp þbUðx0Þ½ �
; (22)

where b = 1/kBT. The solute concentration difference between
the two volumes is Dcs = c(r)

s � c(l)
s . For simplicity we assumed

that the barrier has an extension L.
Now turning to the momentum conservation equation for

the fluid (solvent + solute), the flow field v of the fluid obeys a
Stokes equation (neglecting inertial terms)

0 = �=p + Z=2v + fext, (23)

where p is the fluid pressure and fext represents the total volume
forces acting on the system, e.g. the forces acting on the solvent
and on the solute, here

fext = cs(�=U). (24)

The driving force inducing the solvent flow along the x axis
is accordingly written in terms of an apparent pressure drop,
�qxP = �qxp + cs(x)(�qxU). The membrane, via its potential U, will
therefore create an average force on the fluid, which writes per unit
surface

�DP ¼ �Dpþ
ðL=2
�L=2

dxcs �@xUð Þ � �Dpþ sDP; (25)

where D means the difference of a quantity between the two
sides. The second term of eqn (25) can be interpreted as the
osmotic contribution. Using the expression for the concentration
profile given in eqn (22), one recovers the classical van ’t Hoff law
of the osmotic pressure, DP = kBTDcs, and furthermore obtains
an expression for the reflection coefficient s as

s ¼ 1� LÐ L=2
�L=2dx

0 exp þbUðx0Þ½ �
: (26)

The above result correctly recovers the case of a completely
semi-permeable membrane (no solute flux across the membrane),
i.e., bU c 1 and s - 1, yielding �DP = �D[p � P]. In the
intermediate cases, although the membrane is permeable, a flow
arises due to the solute concentration gradient even in the absence
of an imposed pressure gradient. When the potential is repulsive
and small UB kBT, then 0 o so 1; the flow is in the direction of
increasing concentration.

Integrating eqn (23) over the membrane area (A) and
thickness (L) allows the total flux Q to be expressed as

Q = �Lhyd(Dp � skBTDcs). (27)

Here the permeance Lhyd can be expressed in terms of the

permeability, khyd, as Lhyd ¼
A

L

khyd
Z

. The permeability khyd is

defined formally in terms of the flow as khyd
�1 = h�r2vi/hvi,

where h�i ¼V�1Ð ÐdxdAð�Þ denotes an average over the pore
volume, here V = AL. These parameters, khyd and Lhyd, take
into account the detailed geometry of the pores in the
membrane (pore cross section, length, etc.). Overall eqn (27)
agrees with the Kedem–Kachalsky result in eqn (15). While this
approach is derived here in the dilute regime for the solute, it
can be generalized to arbitrary concentrations, see ref. 51.

As a last remark, it is interesting to note that the mechanistic
approach highlights an underlying fundamental symmetry in the
transport phenomenon. Indeed eqn (25) introduces the osmotic

pressure as the driving force on the fluid:
Ð L=2
�L=2dxcs �@xUð Þ ¼ sDP.

Now the Smoluchowski equation for the solute – integrated over the
membrane thickness L, eqn (21) – contains the very same term and
one may accordingly rewrite the solute flux as

Js ¼ �
Ds

L
A Dcs � s

DP
kBT

� �
(28)

The solute flux is therefore intimately related to the osmotic
pressure. As is transparent from this equation, the van ’t Hoff
osmotic pressure is fully expressed, i.e. DP = kBTDcs, only when
the solute flux vanishes Js = 0 (s = 1 and os = 0). Reversely for a fully

permeable membrane Js ¼ �
DsA

L
Dcs, and there is no osmotic

pressure (s = 0 and os = 1). Finally this equation can be rewritten as
Js = �DsA (1 � s)Dcs/L, so that the ‘‘mobility’’ coefficient os is
related here to the reflection coefficient as os = 1 � s.

In this first part we have reviewed the basic understanding
of osmosis, from the historical discovery of the phenomenon
to the precise understanding of the effect in terms of
thermodynamic forces. Although simplistic, the previous
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mechanical/kinetic approach provides a fruitful and complemen-
tary perspective on osmotic transport, which suggests a number of
generalizations – that we will discuss below. It also reveals that the
key aspect of osmosis is not really the membrane itself, but the
existence of differential forces acting separately on the solvent and
the solute. This is crucial to understand a number of phenomena
related to osmosis that we discuss below.

3 Osmosis without a membrane

Situations where differential forces act on the solvent and the
solute occur naturally, especially at interfaces: for example a
charged surface does act specifically on dissolved ions, repelling
co-ions and attracting counter-ions; or a neutral hard wall will
repel polymers via excluded volume. As we now discuss in the
following sections, these specific forces may be harnessed to
induce interfacially-driven osmotic flows.

The geometry we will consider here involves a solid surface
along which a solute gradient, or more generally a thermo-
dynamic force – an electric field, a temperature gradient. . . – is
established, as sketched in Fig. 6 and 7. Under an electric field,
the net electric forces occurring within the diffuse interface
close to the solid will push the fluid and generate a so-called
electro-osmosis flow for the solvent. But as we will show below,
a solute gradient rcN parallel to the surface can also generate
fluid motion whose amplitude is proportional to rcN:

vDO p rcN. (29)

This latter phenomenon is usually coined as diffusio-osmosis.
The phenomenon bears some fundamental analogy with Marangoni
effects where a gradient of surface tension at an interface may drive
fluid (or reversely particle) motion as vf p rgLV.54 Now extending
Marangoni flows to solid–fluid interfaces is definitely not obvious,
but it was recognized by Derjaguin and collaborators55,56 that the
diffuse nature of the interface may allow the fluid to ‘‘slip’’ over the
solid surface under a concentration gradient. Diffusio-osmosis is
accordingly an interfacially driven flow, and takes its origin in the
interfacial structure of the solute close to the solid surface, within the
first few nanometers close to the surface.

3.1 From electro- to diffusio-osmosis

3.1.1 From electro-osmosis. . .. Let us start with the canonical
example of electro-osmosis, i.e. the fluid flow close to a solid
surface generated under an applied electric field. A solution
containing ions will build up a so-called electric double layer
(EDL) close to any charged surface: counter-ions are attracted by
the surface charge, while co-ions are repelled. The surface charge,
say S, is balanced in the fluid by a density of charge re = e(c+� c�),
defined as the difference between the density of positive and
negative ions (assuming monovalent ions here for illustrative
purposes). The resulting double layer is diffuse and extends over
a finite width, see Fig. 6. The structure of the EDL was amply
discussed in many textbooks and reviews, and we refer in
particular to ref. 57–59 for further insights. As a rule of thumb,
the extension of the EDL is typically given by the Debye screening

length,58,60 defined as

lD ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8p‘Bcs
p (30)

where cs is the (bulk) salt concentration in the bulk and cB =
e2/4pekBT is the Bjerrum length (e is the dielectric permittivity of
water). Typically for water at room temperature, cB = 0.7 nm and
the Debye length ranges between 30 nm for a salt concentration of
10�4 mol l�1 to 0.3 nm for a 1 mol l�1 salt concentration.

Within the EDL, there is a net charge density in the fluid,
and whenever an external electric field is applied to the fluid
(parallel to the surface), this will generate a net bulk force reE.
The Stokes equation for the fluid velocity writes accordingly in
the direction x (parallel to the solid interface)

Zqzzv + reE = 0 (31)

where z is the direction perpendicular to the interface. The
pressure-gradient term vanishes for the shear-flow considered
here. Using the Poisson equation re = �eqzzVe, relating the
charge density to the electric potential Ve in the fluid, one can
integrate twice eqn (31) to obtain the velocity profile

vðzÞ ¼ �eE
Z

Veðz ¼ 0Þ � VeðzÞ½ � (32)

where a no-slip boundary condition was assumed here. The
electrical potential at the interface is usually identified as the
zeta potential Ve(z = 0) = z. The electro-osmotic velocity is
constant beyond the EDL and reaches its asymptotic value

vN = mEOE (33)

where mEO ¼ �
ez
Z

is the electro-osmotic mobility. In the presence

of hydrodynamic slippage on the surface, the electro-osmotic
mobility is typically enhanced by a factor 1 + b/lD, where b is the
slip length, see ref. 62–64 for more details. We finally note that
the z-potential may be rewritten as a function of the electrical

Fig. 6 Electro-osmosis. (a) In the presence of a surface charge S, an
electrical double layer forms extending typically over a distance fixed by
the Debye length lD. Under an applied electric field E

-
parallel to the

surface, a net electric force builds up due to the unbalanced charge within
the electric double layer. It drives a solvent flow parallel to the surface,
extending as a flat flow profile into the bulk. (b) Visualization of the electro-
osmotic flow in a capillary, via the displacement of (neutral) tagged
molecules. In contrast to the parabolic Poiseuille flow, the electro-
osmotic flow profile takes the form of a plug flow, which barely disperses
the dye. Reproduced from ref. 61 with permission from Springer Nature,
copyright 2005.
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concentration re (by integrating twice eqn (31))

z ¼ �1
e

ð1
0

zreðzÞdz: (34)

From a physical point of view, electro-osmosis may be seen
as a force balance between the viscous friction force at the
interface and the electrostatic driving force within the EDL. The
velocity field is expected to establish over the Debye length lD

and thus the fluid friction force is typically BZvN/lD. Now the
body electrical force within the EDL is simply S � E where S is
the surface charge. From Gauss’ electrostatic boundary condition,
we have S = �eqzVe|z=0 E �ez/lD. Altogether the force balance
thus takes the form

Z
v1
lD
� S� E � � ez

lD
� E (35)

and this leads accordingly to the expression in eqn (33) for the
electro-osmotic mobility. A simple extension of this argument
highlights immediately the potential role of hydrodynamic slip-
page: with a slip length b, the viscous friction force will reduce to
BZvN/(lD + b) while keeping the body force identical, so that the
electro-osmotic velocity will be increased by a factor 1 + b/lD.
Altogether, the electro-osmotic flow thus takes its origin within
the very few nanometers close to the boundary and can be
therefore strongly affected by molecular details: hydrodynamic
slippage,62 nanoscale roughness,65 contamination,66 dielectric
inhomogeneities,67 etc. This makes the underlying physics of
interfacial transport both complex and very rich.

3.1.2 . . .To diffusio-osmosis. . .. While electro-osmosis cor-
responds to interfacially driven fluid motion under an external
electric field, diffusio-osmotic motion occurs under the gradi-
ent of a solute, qxcN, in the vicinity of a solid surface – see
Fig. 7. Similarly to electro-osmosis, a key ingredient is the
specific interaction of the solute with the surface, which occurs
within a diffuse layer of finite thickness. Reflecting the discus-
sion of osmosis across a model potential barrier in Section 2.4,
the solute will be assumed to interact via an external potential
U(z) with the solid surface. One noticeable difference to the

previous membrane case though is that this potential now acts
perpendicular to the solid surface and solute gradient (i.e.
depending on z but not on x), see Fig. 7.

Diffusio-osmosis with neutral solutes. We first consider the
case of neutral solutes. The fluid velocity and solute density
obey the coupled Stokes and Smoluchowski equations, which
write in the stationary state as:

0 ¼ �=pþ Z=2vþ �=Uð Þ;

0 ¼ �= � �Ds=cs þ lscs �=Uð Þ þ vcs½ �
(36)

At infinity, we assume a fixed gradient qxcN along x for the
solute concentration.

These coupled equations are strongly entangled. However in
the limit of a thin interfacial layer – corresponding to a range
for the potential U(z) which is small compared to the lateral
variations of the solute gradient, one expects the concentration
profile to relax quickly to a local equilibrium across the diffuse
layer cs(x,z) C cN(x)exp(�U(z)/kBT).

Turning now to the fluid transport equation, the Stokes
equation projected along the z direction writes simply

0 = �qzp + cs(�qzU) (37)

because the z component of fluid velocity is expected to be
negligible for thin layers. We can integrate this pressure
balance to obtain

p(x,z) � pN = kBTcs(x,z) � kBTcN(x) (38)

which can be seen as an osmotic equilibrium across the diffuse
layer.68 In simple terms, the existence of a specific solute-wall
interaction allows the membrane to ‘‘express’’ the solute osmotic
pressure P(x,z) = kBTcs(x,z) within the interfacial layer. However
the effects of the latter disappear in the bulk (z - N) and there
is no bulk osmotic pressure gradient.

Now inserting the pressure from eqn (38) into the Stokes
equation projected along x, see eqn (36), leads to

Zqz
2vx � qx[p(x,z) � pN] = 0. (39)

Following the same steps as for the electro-osmosis, one
obtains the fluid velocity along the x coordinate in the bulk
fluid as

vN = mDO � (�kBTrxcN) (40)

with the diffusio-osmotic mobility mDO given by

mDO ¼
1

Z

ð1
0

z
cs x; zð Þ
c1

� 1

	 

dz

¼ 1

Z

ð1
0

z exp
�UðzÞ
kBT

	 

� 1

	 

dz:

(41)

This expression is similar to eqn (34) for the electro-osmotic
mobility. The effect of hydrodynamic slippage on the surface
can also be taken into account, along the same lines as in
ref. 69 and 70 and leads to an enhancement factor of the
diffusio-osmotic mobility scaling as (1 + b/l), where b is the

Fig. 7 Diffusio-osmosis. A gradient of solute imposed far from the surface
induces a fluid flow. Here the solute is assumed to interact with the surface
via an interaction potential U(z) (an adsorbing profile on the figure). The
solute interaction with the surface induces a force on the fluid, here
towards the surface, which is higher in the more concentrated area. This
normal force converts into a parallel pressure drop which generates a fluid
flow from high to low concentrations (and reversely for a repelling
interaction).
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slip length and l is the typical width of the diffuse interface.
The amplification effect is expected to be massive on super-
hydrophobic surfaces70 and amplification by orders of magnitude
are predicted. Interestingly for strongly hydrophobic surfaces where
the liquid–vapor interface dominates, the diffusio-osmotic velocity

takes the physically transparent expression vDO ¼
beff

Z
rgLV, where

beff is the effective slip length on the superhydrophobic surface and
gLV is the (solute concentration dependent) surface tension of the
liquid–vapor interface.

Similarly as in electro-osmosis, diffusio-osmosis can be
interpreted in terms of a simple force balance within the
diffuse layer. A first integration of eqn (39) indeed shows that
diffusio-osmotic flow results from the balance between the
viscous stress on the surface and an osmotic pressure gradient
integrated over the diffuse layer:

0 ¼ Z@xvxjwall þ
ð1
0

dz@x Pðx; zÞ �P1ðxÞ½ � (42)

Simple estimates of the various terms lead to a more
qualitative version of this force balance as

Z
v1
l
� 	l� �kBTrxc1ð Þ (43)

where l is defined here as the range of the potential U, and
the 	 sign depends on whether the solute is attracted or depleted

by the surface. This leads to v1 � 	
l2

Z
� �kBTrxc1ð Þ in full

agreement with eqn (40) and (41).
Diffusio-osmosis is definitely an osmotic flow, e.g. a flow

driven by an osmotic pressure gradient located within the
diffuse layer. However the direction of the diffusio-osmotic
flow can be along or against the gradient of the solute, in
strong contrast to bare osmosis which induces a flow towards
the highest solute concentration. That is highlighted in the
expression of the diffusio-osmotic mobility, eqn (41), which can
be positive or negative depending on the attractive or repulsive
nature of the interaction potential U(z). As a rule of thumb, the
sign of the mobility will be dominantly determined by the
adsorption G ¼

Ð1
0 dz cðx; zÞ=c1ðxÞ � 1ð Þ. If there is a surface

excess (G 4 0 or U(z) o 0), the solvent flow goes towards the
low concentrated area (mDO 4 0). That may appear as surprising
because it amounts to concentrating even more the
already concentrated solution; we shall discuss this apparent
paradox in Section 3.2.2. Reversely a surface depletion resulting
from a repulsion of the solute from the wall (Go 0 or U(z) 4 0)
reverses the direction of the solvent flow towards the high
concentrated zone (mDO o 0). An interesting limiting case for
this behavior is exemplified by a solute interacting with the wall
via steric effect, i.e. hard-core excluded volumes. For a solute
particle with radius R, the mobility in eqn (39) reduces to

mstericDO ¼ �
R2

2Z
: (44)

This behavior was measured in particular in ref. 25 for the
diffusio-osmotic flow under a neutral polymer concentration

gradient, see Fig. 8 for an illustration. A final remark is that this
simple rule for the correlation between adsorption and the sign
of diffusio-osmosis is not exact and may fail for more complex
interactions between the solute and the wall, for instance with
an oscillatory spatial dependence of the concentration profile
due to layering. The sign of mDO may then be expected to differ
from the sign of the adsorption G. In this case, no obvious
conclusion can be made for the direction of the diffusio-
osmotic velocity and a full calculation has to be made, see for
example ref. 26.

Diffusio-osmosis with electrolytes. We now discuss specifically
the case of diffusio-osmosis under salinity gradients. Here, as
for electro-osmosis, the diffuse layer corresponds to the electric
double layer created close to a charged surface, see Fig. 9. The
derivation follows similar steps as above, from eqn (36)–(41),
except that one has to take into account the spatial distribution

Fig. 8 Experimental evidence for diffusio-osmosis. (a) A gradient of
polyethylene glycol polymer PEG is maintained along a nanochannel
thanks to lateral microchannels acting as reservoirs. The nanochannel is
160 nm in thickness and is fully permeable to PEG. Under a PEG concen-
tration gradient, a diffusio-osmotic flow arises: water moves towards higher
concentrations of PEG. The flow rate Q is measured via the concentration
profile of a dye. (b) Measured diffusio-osmotic flux Q as a function of the
PEG concentration difference, showing a velocity proportional to the PEG
concentration difference. This behavior and the sign of the effect are
consistent with a steric exclusion of PEG on the surfaces, as predicted in
eqn (44). (a) and (b) are reproduced and adapted from ref. 25 with permis-
sion from the American Physical Society (APS), copyright 2014.

Fig. 9 Diffusio-osmosis with charged electrolytes. (a) Geometry; an elec-
trolyte concentration difference is imposed far from the charged interface.
The electrical interaction with the surface induces an (attractive) electro-
static force – sketched with arrows – on the fluid which is larger where the
salt concentration is larger, hereby inducing a net flow towards the low
salinity region. (b) Measurement of the diffusio-osmotic flux as a function
of the difference of the logarithm of the salt concentration between two
reservoirs, in a similar way as in Fig. 8. Note the reversal of the sign as
compared to Fig. 8b. Reproduced from ref. 25 with permission from the
APS, copyright 2014.
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of both the counter- and co-ions in the EDL that follow a
Poisson–Boltzmann distribution, see ref. 71. In this case the
diffusio-osmotic velocity is shown to take the form

vN = DDO(�r log cN) (45)

where we introduced a mobility DDO which has now the units of
a diffusion coefficient. It takes the expression54

DDO ¼
kBT

2pZ‘B
� log cosh2

F0

4

	 

(46)

where F0 = eV0/kBT is the dimensionless surface potential V0 (usually
identified with the zeta potential). Note that for an electrolyte with
unequal diffusion coefficients for the anions and cations (D+ a D�),
a diffusion electric field builds up under the gradient of the salt
concentration (if no current exists in the bulk). This takes the form

Ediff ¼
kBT

e
dr log c1 with d = (D+ � D�)/(D+ + D�) and adds a

supplementary electro-osmotic contribution to the diffusio-

osmotic velocity as vdiff ¼ �
ez
Z
� Ediff . Accordingly this leads to

a supplementary contribution to the mobility as:

Ddiff
DO ¼ �

ez
Z
� kBT

e
d (47)

An important remark is that for electrolytes the velocity is
proportional to the gradient of the logarithm of salt concen-
tration, in contrast to solutes where it is basically linear in the
gradient, see eqn (40). We will refer to this dependence as ‘‘log-
sensing’’ by analogy to behaviors occurring for the chemotaxis
of biological entities (e.g. bacteria). Such a dependence may be
understood on the basis of the simple scaling argument based
on the force balance above, see eqn (43). Indeed the thickness
of the diffuse layer is now given by the Debye length, and

v1 ’
lD2

Z
� �kBTrxc1ð Þ. Since the Debye length depends on

the salt concentration as lD
2 = (8plBcN)�1, one obtains:

v1 � �
kBT

8pZlB
rx log c1: (48)

which is qualitatively similar to the exact results in eqn (46) and
predicts log-sensing for diffusio-osmosis with electrolytes.

This behavior is confirmed by experimental investigations of
water flows under salinity gradients in nanofluidic circuits,25 see
Fig. 9. Diffusio-osmotic flow of water under salinity gradients was
also evidenced across carbon nanotube membranes,72 confirming
further that diffusio-osmosis was acting against bare osmosis. In an
alternative configuration, diffusio-osmosis was also shown to
induce very large ionic currents under salinity gradients.73–75 We
will come back to such cross effects associated with diffusio-
osmosis in Section 3.2.1, as well as in the section dedicated to
blue energy harvesting, Section 6.3. In a very different field,
diffusio-osmotic flows were also shown to strongly impact and
shape the reactive fluid flows occurring in the solid Earth.76 Log-
sensing has also many counter-intuitive consequences and a variety
of applications,77,78 which we will discuss more specifically in the
context of diffusio-phoresis in Section 5.

Solvo-osmosis and diffusio-osmosis with mixtures. Up to now
we considered merely dilute solute solutions, but all previous
results can be generalized to mixtures of liquids with any molar
fraction of its constituents. The key ingredient remains that the two
constituents interact differently with the solid substrate. As shown
in ref. 51, the diffusio-osmotic velocity now takes the expression

vN = mDO(�rxP[XN(x)]), (49)

where P is the generalized osmotic pressure defined in eqn (9),
calculated for the molar fraction XN, hence generalizing the
expression in eqn (40). The diffusio-osmotic mobility mDO is still

given by the initial expression mDO ¼
1

Z

Ð1
0 dz0z0

csðx; z0Þ
c1ðxÞ

� 1

	 

.

However, for a solute-substrate interaction potential U, the
concentration profile cs(x,z) is now implicitly related to the
value in the bulk cN(x) via the local equilibrium condition
m[cs(x,z)] + U(z) C m[cN(x)].

Diffusio-osmosis with ethanol–water mixtures was investi-
gated recently in ref. 26. But the majority of existing experi-
mental investigations merely explored the reverse configuration
of phoretic transport of particles under gradients of liquid
composition, denoted as ‘‘solvo-phoresis’’.21,79 Interestingly in
ref. 21, the phoretic transport of colloidal (polystyrene) particles
in ethanol–water mixtures resulted in a ‘‘log-sensing’’ behavior
of the particle diffusio-phoretic velocity, obeying V = DSPr log X,
with here X the ethanol mole fraction.

3.1.3 . . . And electro-chemical equivalence. In the case of
electrolytes, the two previous transport phenomena, electro-
and diffusio- osmosis, are fundamentally intertwined. Indeed,
from the thermodynamic point of view, the chemical potential
and the electric potential contributions merge into the electro-
chemical potential: mel = m + qV (with q the ion charge and V the
electric potential). There is accordingly a deep analogy when
driving the system under gradients of chemical potential
(diffusio-osmosis) or driving under gradients of electric
potential (electro-osmosis). An illuminating discussion on this
point and the corresponding force balance is provided by T.
Squires in ref. 59 and 80 and we reproduce the essentials of the
argumentation here.

Let us consider in full generality that a gradient of the
electrochemical potential is applied in the bulk far from the
boundary, rmB

el,i (along the direction of the solid surface, say x);
the index i runs over the various ion species in the solution. As
we discussed above for both electro- and diffusio-osmosis, this
will generate net thermodynamic forces on individual ion
specie i, which may be written as fi(x,z) = �rmel,i(x,z). A key
remark is that the electrochemical potential is approximately
constant across the EDL, i.e. mel,i(x,z) C mB

el,i(x), so that the
individual force rewrites fi(z) C �rmB

el,i. The interfacial motion
results from the forces in excess to the bulk, so that the
corresponding total force acting on the fluid rewrites

fT ¼
X
i¼1;n

Dci � fiðzÞ ¼
X
i¼1;n

Dci � �rmBel;i
� �

(50)

where the sum runs over n ion species and Dci = ci(x,z) � cB
i (x) is

the excess ion concentration in the boundary layer, as compared
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to the bulk. This driving force will generate a flow according to
the Stokes equation Zqz

2vx + fT = 0 and following the same steps
as above, one obtains the far field slip velocity as

v1 ¼ �
X
i¼1;n

1

Z
rmBel;i

ð1
0

dz zDciðzÞ �
X
i

Mi �rmBel;i
� �

; (51)

where the mobility Mi takes the expression Mi ¼
1

Z

Ð1
0 dz zDciðzÞ.

For symmetric and monovalent ions, these mobilities can be
exactly calculated using Poisson–Boltzmann framework, leading to

M	 ¼
e
eZ

z
2
þ kBT

e
� log cosh2

F0

4

	 
� �
(52)

with F0 = eV0/kBT the dimensionless surface potential and here
z � V0 the zeta potential.

Under a constant electric field rmB
	 = 8eE0 and the electro-

osmotic mobility is predicted as mEO¼
1

e
Mþ �M�ð Þ, in full

agreement with the previous result in eqn (33) and (34). Under
an imposed ionic strength gradient in the bulk, then rmB

	 =
kBTr log c	 are identical and MDO = M+ + M� � DDO, again in
full agreement with the previous result in eqn (46).

3.2 Transport matrix and symmetry considerations

3.2.1 Transport matrix and cross fluxes. As introduced in
Section 2.3, the framework of irreversible processes allows one
to write a linear relation between thermodynamic forces and
fluxes.30 Adding the electric forces to the set of forces, one may
generalize the results in eqn (14) to obtain linear transport
equations now relating the solvent flux Q, excess solute flux Js �
csQ and electric current Ie to the pressure gradient �rp,
chemical potential gradient �rm and the applied electric
field �rVe, and summarized as

Q

Js � csQ

Ie

0
BBB@

1
CCCA ¼ L�

�rp

�rm

�rVe

0
BBB@

1
CCCA; (53)

Due to Onsager principle, this matrix is symmetric and
positive definite.30 Each term of this matrix corresponds to a
specific transport phenomenon. Diagonal terms are associated
respectively with permeability (characterizing solvent flux
under a pressure drop), diffusion (characterizing solute
flux under an applied solute gradient) and electrical conduc-
tance (characterizing ionic current under an applied electric
field). The off-diagonal terms correspond to cross effects. We
detail below the cross effects that are all recapitulated in
Fig. 10.

In the first row of the matrix, electro-osmosis and diffusio-
osmosis – explored so far – correspond to the terms relating
the solvent flux Q to a chemical gradient �rm and an electric
field �rVe respectively. A key consequence of the symmetry of
the matrix is that the same mobilities characterize symmetric
transport phenomena. For example consider the first column of
the matrix L, one finds that the electro-osmotic mobility and
diffusio-osmotic mobility also describe respectively the electric

current and excess solute flux generated under a pressure
drop, as

Ie ¼AmEO � �rpð Þ

Js � csQ ¼AmDO � �rpð Þ
(54)

where A is the channel cross section. The first corresponds to
the so-called streaming current and takes its origin in the
motion of mobile ions in the EDL which are carried by the
pressure-driven flow; the pressure-driven excess solute flux has
a similar physical origin.

Streaming currents are commonly measured in experiments,60,62

even down to single carbon and boron-nitride nanotubes.73 To our
knowledge, no experimental measurement of pressure-driven excess
solute flux has been performed up to now. However this is not the
case in molecular dynamics simulations where it is far easier to
measure the diffusio-osmotic mobility via the pressure-driven excess
flux26,69 – see details in Section 3.5.

Now, the transport matrix suggests that an electric current
can be generated under an osmotic gradient, which we term
here the diffusio-osmotic ion current, following

IDO = Kosm � (�r log cN). (55)

Let us consider a channel in the form of a slit of width w and
height h (with w c h to simplify). Using Poisson–Boltzmann to
describe the EDL, one can calculate the corresponding osmotic
electric current64,73,81 and the mobility takes the form

Kosm ¼ a� ð�SÞ kBT
2pZ‘B

1� sinh�1 w
w

	 

(56)

where a C 2w is the perimeter of the channel cross section. In

this expression we introduced w ¼ sinh
jF0j
2

with F0 = eV0/kBT the

dimensionless surface potential V0. In the Poisson–Boltzmann
framework w is related to the surface charge S according to
w = 2pcBlD|S|/e with lD the Debye length, so that w p |S|. This
formula can be extended to take slippage on the surface into
account, as well as mobile surface charges.64 More precisely the
diffusio-osmotic ion current takes its origin in the motion of
ions in the EDL which are carried by the diffusio-osmotic flow.
As a simple estimate we may write that IDO E (�S) � vDO, where
vDO is the diffusio-osmotic velocity: using the expression eqn (40)
for vDO, one indeed recovers eqn (56). However the prediction
of eqn (56) reports a more complex dependence, since the linear
dependence in S is only valid for large enough S, while for low S,
one finds that Kosm p S3, i.e. vanishingly small. Such osmotically

Fig. 10 Transport matrix. Explicit transport matrix L as presented in
eqn (53), with colors indicating symmetric terms.
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driven currents have been measured experimentally in various
systems, nanochannels, single nanotubes, single nanopores – see
ref. 73, 74, 82 and 83 – to cite a few. This effect finds important
applications in the context of blue energy harvesting,75 that we will
explore in detail in Section 6.3.

3.2.2 Entropy production with diffusio-osmosis. We pointed
out above that the sign of the diffusio-osmostic mobility, mDO,
can be either positive or negative, so that the corresponding flux
can be along or against the concentration gradient. A negative
mDO may appear at first sight striking since the direction of the
solvent flow corresponds to that of an increase in salt concen-
tration, thus leading to an apparent violation of the second
principle. This is however not the case, as it can be verified from
a calculation taking into account all relevant fluxes. To highlight
this situation, let us consider a membrane separating two
reservoirs with fixed volumes; the concentration on the left/right

reservoir is csðtÞ ¼ c0 

DcsðtÞ

2
. The pore size is assumed here to

be larger than the solute diameter so that the membrane is
permeable to the solute and there is no bare osmotic pressure. A
salinity gradient however generates a diffusio-osmotic flow on
the pore surface. Based on the transport matrix formulation,
eqn (14), one may write the solvent and (excess) solute fluxes as a
function of the solute concentration and pressure gradients
according to:

Q ¼Ap

L
kð�DpÞ þ mDO �kBTDcsð Þ½ �

Js � c0Q ¼
Ap

L
mDOc0ð�DpÞ þ ls �kBTDcsð Þ½ �

(57)

with Ap the total (open) pore area of the membrane, L its
thickness and ls = Ds/kBT the diffusive mobility of the solute
across the membrane, defined in terms of the solute diffusion
coefficient; k is defined in terms of the permeance as
Lhyd� kAp/L (note that k = khyd/Z where khyd is the permeability
introduced above). The second principle imposes that the trans-
port matrix in eqn (14) and (57) should be definite positive.
Accordingly, the determinant detðLÞ / kls � mDO

2c0 must be
strictly positive.

On the other hand, since the volume is fixed, the flux
vanishes, Q = 0, and the solute flux writes

Js ¼
Ap

L

1

k
lsk� mDO

2c0
� �

�kBTDcsð Þ (58)

we find that the term in brackets is proportional to the
determinant detðLÞ, and therefore is constrained by the second
principle to be positive. Accordingly, whatever the sign of the
diffusio-osmotic mobility mDO and the corresponding diffusio-
osmotic solvent flux, the total solute flux will go down the
solute gradient, as expected from the second principle.

3.3 The peculiarity of diffusio-osmosis across an orifice

In the previous sections, we implicitly considered (diffusio-
osmotic) transport across long channels, so that fluid flow is
translationally invariant along the channel’s length. However
transport across thin membrane pores84–86 raises the question

of the specificity of these geometries in which the channel
length L may decrease down to molecular lengths, in particular
with the advent of 2D materials such as graphene, h-BN and
MoS2 as membranes for fluidic transport.74,87,88 For example,
recent measurements across nanopores in MoS2 membranes
reported huge diffusio-osmotic ion currents under salinity
gradients.74 In another experiment, gradients of salts were
shown to strongly increase the capture rate of DNA molecules
across solid-state nanopores.84

For long channels the driving force for fluid transport, e.g.
the gradient of the chemical potential, is expected to scale as its
inverse length, rm = Dm/L. This would suggest that the driving
force diverges as 1/L in the limit of nanopores where L - 0.
However entrance effects level off this diverging behavior to
a value typically fixed by the lateral size of the pore, say a its
radius – see Fig. 11. As a rule of thumb, one may expect that
rm E Dm/a (see for example ref. 89 for the conductance of ion
channels). However the flow in and out of the pore is expected to
be strongly disturbed, as shown for example for electro-osmosis
across nanopores in thin membranes.90–92 Similar effects are
accordingly expected to apply to diffusio-osmotic transport.

The diffusio-osmotic flow across a nanopore with vanishing
thickness was recently calculated analytically by Rankin et al.93

The calculation is best performed in oblate-spheroidal coordi-
nates, in line with a similar calculation for electro-osmosis in
ref. 90. The averaged diffusio-osmotic velocity vDO across the
pore, which is defined in terms of the diffusio-osmotic flux
Q = pa2vDO, is proportional to Dcs the difference (and not the
gradient as in eqn (40)) of the solute concentration between the
two sides of the membrane: vDO = mpore

DO (�kBTDcs). The general
expression for the mobility derived in ref. 93 takes the form

mporeDO ¼ �
2a

p2Z

ð1
0

dxx2
ð1
0

dn
e�U=kBT � 1

1þ n2 (59)

where (n,x) are the oblate spheroidal coordinates (iso-n and
iso-x curves are respectively oblate spheroids and hyperboloids
of revolution). This expression involves a complex spatial

Fig. 11 Peculiarity of pressure flow across an orifice. (a) Simulated flow
velocity and streamlines across a pore with, say, radius a = 10 nm and
thickness L = a/10 under a pressure drop Dp = 1 bar. The scale bar is 10 nm.
The streamlines are spaced equally in magnitude at the center of the pore.
(b) Simulated flow velocity and streamlines across a channel with same
radius a and thickness L = 10a under the same pressure drop. The scales
(velocity and geometry) are the same as for (a). For readability the whole
channel length is not plotted. (center) Normalized velocity profile
(perpendicular to the membrane) at the center of the membrane, compar-
ing the channel and pore cases.
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average of the Boltzmann weight e�U/kBT � 1, which should be
compared to the corresponding simple expression in eqn (41)
for the planar case.

The above result can be simplified for certain functional forms
of the potential U. For example, assuming that the interaction
potential U depends only on variable x allows the mobility to be
rewritten in terms of the two-dimensional interaction within the

pore only as mporeDO ¼
1

pa2Z

Ð a
0drr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � r2

p
e�UðrÞ=kBT � 1
� �

with r

the axi-symmetric distance to the center of the pore.93 This expres-
sion for the mobility can be recovered thanks to the symmetry of
the transport matrix eqn (53). Indeed mpore

DO can also be calculated in
terms of the excess solute flux under a pressure driven flow: in this
case the velocity profile was shown to be semicircular (and not
parabolic),94–96 see Fig. 11, and the excess solute flux conveyed by
the circular flow reduces to the above expression.

The complexity associated with diffusio-osmosis across an orifice
is also highlighted by the predicted dependence of the mobility on
the pore size a and the range l of the interaction U. Let us focus the
discussion for the thin diffuse layer case, where l { a (we refer to
ref. 93 for a full discussion). As a reference, the diffusio-osmotic
mobility across a long channel with length L was shown previously to

scale as mDO �
l2

ZL
, see e.g. eqn (43). However, for an orifice in a thin

membrane, Rankin et al. showed on the basis of eqn (59) that the
mobility exhibits a variety of non-trivial scalings, with mpore

DO B lga1�g,
and an exponent g that depends on the details of the interaction
potential U. For example, for the potential discussed above, which
assumes a dependence as U(x), one finds g = 3/2; but for a potential
depending on the distance to the membrane or to the edge of the
pore, then g = 2.93 In the latter case, g = 2, the diffusio-osmotic
mobility scales as mpore

DO B l2/a, which corresponds to the long
channel result with the length L replaced by a. But for other values
of the exponent g this simple rule of thumb does not apply, making
the diffusio-osmotic transport across the orifice quite peculiar.

As a last comment, it is possible to extend qualitatively these
results to electrolyte solutions, by assuming that the potential
range l identifies with the Debye length. This suggests an
anomalous salinity dependence for the diffusio-osmotic mobi-
lity DDO = vDO/[�kBTD log cs] p cs

1�g/2, in contrast to long
channels where DDO p c0

s. The nanopore geometry may thus
depart from the log-sensing behavior of diffusio-osmotic trans-
port under salinity gradients. These results remain however to
be fully assessed experimentally.

3.4 Alternative interfacial transport: thermo-osmosis

Extending on electro- and diffusio-osmosis, thermo-osmosis
corresponds to fluid motion under gradients of temperature;
see Fig. 12a. Such effects were reported as early as in the
1900s.97,98 Thermo-osmosis was first rationalized in terms of
thermodynamic forces by Derjaguin et al.54,99,100 Similarly as
for diffusio-osmosis in eqn (41) and electro-osmosis in eqn (34),
the net velocity generated far from the surface is predicted as54

v1 ¼
�2
Z

ð1
0

zdhðzÞdz
	 


r logT1 (60)

where TN is the temperature far from the surface and dh(z) is the
excess specific enthalpy in the interfacial layer as compared to the
bulk liquid. If the solid surface is e.g. hydrophilic, then dh(z) t 0
and the flow of water is directed toward higher temperatures, see
Fig. 12 and ref. 101 and 102. An interpretation of thermo-osmosis
(and -phoresis) in terms of interfacial surface tension modification,
and therefore Marangoni-like flow generation, has also been
suggested103 and formalized.104,105 The transport of fluids or
particles under thermal forces led to strong debates between
the interfacial approach discussed above and an ‘‘energetic’’
approach,106–108 which attempts to write the net driving force
acting on a particle as the gradient of a thermodynamic
quantity.106 The resulting Soret coefficient – defined as the
ratio between the thermophoretic mobility and particle diffu-
sion coefficient – highlights a different dependence on the
particle size as compared to the interfacial framework dis-
cussed above. Although attractive, the energetic approach was
then extensively criticized.107,108

As for electro- and diffusio-osmosis, the details of the
interfacial dynamics, for example slippage at the interface, is
expected to strongly affect thermo-osmotic flows. This has been
evidenced for example in molecular dynamics where a huge
enhancement of thermo-osmosis was measured with slip,109,110

although the exact dependence of thermo-osmosis on the inter-
facial properties was measured to be substantially complex.110

We refer to the ref. 102 and 107 for more in-depth discussion on
thermo-osmosis and -phoresis.

Lately thermo-osmosis has gained growing attention in
terms of applications and we briefly comment here on this aspect.
Many applications of the phenomenon are done in the context of
thermo-phoresis, or displacement of colloidal particles under ther-
mal gradients (in a similar way to diffusio-phoresis, see Fig. 18a).
This phenomenon was harvested to manipulate colloids and build
structures107,111–113 with advanced applications in microfluidics101 or
towards DNA detection.114 Among other phenomena, it was shown
that couplings between thermo- and diffusio-phoretic drivings allow
to finely manipulate colloidal structures.115 Also, thermophoresis of
molecules can provide detailed information about particles and

Fig. 12 Thermo-osmosis near an interface. (a) Geometry; a temperature
gradient is imposed far from a hydrophilic surface. A thermal flux from the
hot to the cold region is therefore installed. The interaction of water with
the surface induces a force (light red arrows) that varies along the surface
due to the thermal gradient, inducing a net flow. (b) Thermo-osmotic flow
measured on two different surfaces (going towards the higher tempera-
tures) as a function of the distance to the heat source. Reproduced from
ref. 101 with permission from the APS, copyright 2016.
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molecules (size, charge and hydration shell) and this provide
very efficient analytical tools to probe protein in biological
liquids.116,117 In a different context, applications of thermo-
osmosis were suggested for the recovery of water from organic
waste-water,118 as well as for energy harvesting from thermal
differences (and waste heat).110,119,120

3.5 Numerical simulations of (diffusio-)osmotic transport:
methodologies and results

Molecular simulations have now become a highly efficient tool to
explore the fundamental properties of fluids and materials. Mole-
cular dynamics simulate the many-body dynamics of particles and
molecules, either at equilibrium or far from equilibrium, submitted
to various thermodynamic forces. They provide detailed informa-
tion on the molecular processes at play. In the present context of
studying osmotic forces and related fluxes, this represents a key
opportunity to understand the fundamental and subtle origins
underlying interfacial transport and how these can be affected by
the microscopic details of the interface.

Simulating electro-osmosis is relatively straightforward in the
sense that the effect of the electric field converts directly into an
electric force acting on the suspended ions. This has led to
numerous molecular dynamics studies of electro-osmosis, as well
as of streaming currents, allowing to decipher a wealth of phenom-
ena associated with transport within the electric double layer.62,121

Now, simulating diffusio- and thermo-osmosis is by far more
difficult and subtle. Indeed such transport occurs under thermo-
dynamic forces associated with the gradient of concentration or
temperature, and these can not obviously be represented in terms
of mechanical forces acting on the simulated particles. We discuss
in this section recent developments in the numerical methodolo-
gies allowing to perform simulations of osmotic transport.

For bare osmosis, direct simulations can be performed
using two explicit reservoirs with difference of solute concen-
tration. For example such implementation was used by Kalra
et al. in the study of osmosis across carbon nanotubes.122 This
configuration has the drawback that osmosis occurs in the
transient regime since the reservoirs empty/fill during the
osmotic process and this limits statistics. Osmosis was later
rationalized in more simple terms by simplifying the explicit
membrane description to reduce it to a confining potential
acting on the solute only.123–125 This is the numerical pendant
to the mechanical views of osmosis described in Section 2.4.

The numerical implementation of diffusio-osmosis in molecular
dynamics is far more complex since one should be able to represent
the chemical gradient in terms of a microscopic force acting on the
particles. Various methods to investigate diffusio-osmotic transport
were proposed in the recent literature and we discuss them now.

Using symmetry relations to infer transport coefficients. It
turns out that it is far easier to calculate the diffusio-osmotic
mobility by exploiting the symmetry of the transport matrix.
Recalling the general relation between fluxes and forces,

Q

Js � csQ

!
¼

L11 L12

L21 L22

!
�

�Dp

�kBTD log cs

!
: (61)

the Onsager symmetry for the transport matrix implies that
L21 = L12. Accordingly, calculating the diffusio-osmotic mobility
as a water flux under a concentration gradient, here L12 =
Q/(�kBTD log cs), is therefore equivalent to calculating the
excess solute flux under a pressure gradient, here L21 =
( Js� csQ)/(�Dp) – see Fig. 13a. The latter is far easier to implement
numerically in non-equilibrium molecular dynamics (NEMD) since
it requires only to generate a pressure-driven flow and measure the
integrated solute flux (or locally the velocity and solute concen-
tration profile). This can be performed with periodic boundary
conditions along the flow, so that the resulting diffusio-osmotic
mobility is indeed characteristic of the liquid–solid interface
under scrunity, and does not depend on e.g. entrance effects
into the pore. This methodology was successfully applied to
quantify the diffusio-osmotic mobility on a variety of interfaces,
including superhydrophobic surfaces, graphene, and with
various liquids.26,69,70,110 We discuss below some results of
the simulations.

Equilibrium fluctuations for linear response coefficients.
Transport coefficients may also be inferred from equilibrium
fluctuations by making use of Green–Kubo (GK) relations for
the various mobilities. The transport coefficients introduced in
the transport matrix L can indeed be written in terms of a time-
correlation function of the fluctuating fluxes Qi at thermal equili-
brium. Such formal relations are obtained thanks to linear-response
theory and the fluctuation–dissipation theorem.126–128 They provide
generic expressions for the non-equilibrium mobilities in terms of
equilibrium correlation functions in the form

Lij ¼
V

kBT

ð1
0

dt QiðtÞQjð0Þ
 �

(62)

where V is the system volume and {Qi} are the fluxes under
scrutiny. The symmetry of the transport matrix originates in
the time-symmetry of the underlying microscopic dynamics.20

The simplest route to obtain the Green–Kubo formula for the

Fig. 13 Non-equilibrium molecular dynamics of osmotic interfacial trans-
port. Inspired from ref. 125. (a) Excess flux under pressure gradient. The
pressure gradient is obtained by applying a force acting on each particle
and the solute flux in excess to the bulk Js � csQ is measured. (b) NEMD
method to simulate interfacial transport under chemical potential gradi-
ents. The chemical potential gradient is modeled as a forward force per
solute particle (red) and a properly defined counter force per solvent
particle (blue) such that the total force on the fluid in the bulk is zero. The
local diffusio-osmotic velocity profile is directly measured.
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diffusio-osmotic mobility is to consider the solute excess flux
generated under a pressure drop since the latter is equivalent to
a body force applied to all system particles. The linear-response
formalism then immediately leads to125

L21 ¼ L21 ¼
V

kBT

ð1
0

ðJs � c1QÞðtÞQð0Þh idt: (63)

In the case of a channel with length L and cross area A, one

has L21 ¼ L21 �
A

L
mDO. We refer to ref. 125 and 129 for detailed

derivations of these GK equations.
These GK formula allow to calculate numerically the diffusio-

osmotic mobility, as well as any off-diagonal terms of eqn (53), by
estimating the correlation functions in eqn (63) in equilibrium
simulations. This approach was followed in ref. 125, 129 and
130 and the resulting mobilities were successfully compared with
results of NEMD simulations, as discussed below.

Non-equilibrium molecular dynamics and mechanical represen-
tation of chemical gradients. While the equilibrium approach
provides proper foundations to calculate diffusio-osmosis, non-
equilibrium simulations proves usually more practical to calculate
transport coefficients, e.g. in terms of statistics. However, as we
emphasized above, this requires to build a proper numerical
scheme to implement a mechanical equivalent of the chemical
potential gradient. One interesting route was suggested by Yoshida
et al. in ref. 129 and then applied to electro- and diffusio-osmotic
transport of electrolytes: the authors ran different simulations
where forces fj are applied separately to each individual specie,
here {solvent, anions, cations}, allowing to calculate the corres-
ponding individual fluxes Qi and deduce the mobilities for the
individual species Mi,j = Qi/fj; the electro- and diffusio-osmotic
mobilities are then calculated by proper linear combinations of
the mobilities of individual species, in order to deduce the electro-
and diffusio-osmosis. This approach echoes directly the discussion
in Section 3.1.3, in which the electro-osmotic and diffusio-osmotic
mobilities are deduced from the individual ion mobilities, defined
above as M	.129

It is however relevant to develop numerical methods to
simulate explicitly the diffusio-osmotic flows. Such a numerical
scheme was recently proposed in ref. 125, in which a proper
mechanical set of driving forces is applied to the system to
mimick the chemical potential gradient of the solute. To do so, the
scheme applies differential forces on the solute and on the solvent,
see Fig. 13b: (i) an external force Fm on each solute particle in the
whole system; (ii) a counter force �[NB

s /(NB � NB
s )] � Fm, acting on

each solvent particle. Here NB
s and NB are respectively the number

of solute particles and the total number of particles in a properly
defined bulk region (‘‘sufficiently’’ far from the surface). The
counter force is set to ensure a force free balance in the bulk
volume. Most important, it can be verified that applying linear-
response theory to the system with this set of forces allows one
to show that the resulting diffusio-osmotic mobility does
identify with the GK relation in eqn (63): this therefore fully
validates the theoretical foundations of the proposed numerical
scheme. The corresponding effective chemical potential is then

related to the applied external force Fm via

�rxm ¼ Fm
NB

NB �NB
s

: (64)

This approach leads as expected to a velocity profile exhibiting a
strong gradient within the interfacial layer, and then a plug flow far
from the surface. The deduced diffusio-osmotic mobility obtained
from the NEMD scheme was checked to be identical to both the
equilibrium GK results and those obtained from the excess flux
under pressure-driven flow introduced above.125

Some difficulties with the microscopic stress tensor. The
continuum approach, as described above, allows one to predict
diffusio-osmotic transport in terms of a surface pressure gradient.
In a different approach, it is accordingly tempting to obtain the
diffusio-osmotic flow by a direct numerical calculation of the local
microscopic pressure in the fluid. However, as was demonstrated
by Frenkel and collaborators in a series of papers,131–134 a major
difficulty in this approach is that there is no unique expression for
the local microscopic pressure tensor (e.g. in terms of the position
and velocities of individual particles and the microscopic forces
acting on them). Accordingly various microscopic definitions of the
pressure tensor lead to different numerical results. Such difficulty
was evidenced for diffusio-osmotic flows,132 but also for thermo-
osmotic flows.133,134

Some results of simulations. Simulations have allowed to
gain much insights into diffusio-osmotic transport. Various fluids,
e.g. Lennard-Jones fluids, but also electrolytes and water-ethanol
mixtures, and various interfaces were considered, hydrophilic or
hydrophobic surfaces, graphene, superhydrophobic surfaces, etc.
Among highlighted effects one may quote the impact of hydro-
dynamic slippage of the fluid at the surface, which does boost
considerably the diffusio-osmotic mobility on hydrophobic69 and
graphene surfaces,125 and even more on super-hydrophobic
surfaces.70 The enhancement of the diffusio-osmotic mobility
scales typically like the ratio between the (effective) slip length
and the interfacial length, as mentioned in the previous sections.

Simulations also give some insights on the local diffusio-
osmotic velocity profile and its relation to the concentration
profiles. Within the continuum framework discussed in the
previous section, the velocity profile is obtained simply by
integration of the Stokes equation of motion in eqn (39), with
the pressure expression given in eqn (38). Simulations actually
show usually a very good agreement between the continuum
prediction and the velocity profiles measured in the NEMD
simulations, giving strong support to the continuum descrip-
tion. Such an agreement may be considered as surprising in
view of the strong velocity gradients occurring on length scales
in the range of a few molecular size. However the Stokes
equation is known to be surprisingly robust down to molecular
lengthscales62 and this explains its success in predicting
diffusio-osmotic flows.

Finally, the continuum framework allows one to relate the
diffusio-osmotic mobility to the concentration profile, and
more particularly to its first spatial moment, see eqn (41). It
is accordingly tempting to relate – as for Marangoni effects –
the amplitude of diffusio-osmotic transport to the adsorbed
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quantity, defined as G ¼
Ð
dz csðzÞ � c1ð Þ. The latter is directly

connected to the surface tension via the Gibbs–Duhem relation.
The adsorbed quantity G provides in most cases a good estimate
for the diffusio-osmotic mobility and its sign. However – as
mentioned earlier – for complex concentration profiles the
relation was found to be more complex than this simple rule
of thumb (for example for water-ethanol mixture at interfaces26).

4 Osmosis beyond van ’t Hoff
4.1 Advanced osmosis and nanofluidics

The previous section highlighted molecular insights into osmo-
tic phenomena, unveiling the underlying driving forces at play.
However such perspectives also suggest possible extensions to
obtain more advanced osmotic transport beyond the linear
framework presented before. In this section we discuss osmotic
transport across channels with more complex geometries involving
symmetry breaking, or active parts. Our objective in this section
is to show that it is possible to extend simple osmosis beyond
the van ’t Hoff paradigm and design advanced functionalities
resulting in non-linear and active transport.

In this context it is interesting to observe that in biological
species (bacteria, archaea, fungi,. . .) many membrane channels
do achieve advanced functionalities in order to regulate osmo-
sis: for example rectified osmosis135 – e.g. an osmotic flow with
a non-linear dependence on the concentration gradient-, or
gated osmosis to prevent lysis and survive osmotic shocks in
mechanosensitive channels3 (with diffusio-osmosis identified
as a potential mechanism for the gating mechanism in deform-
able structures136). These few examples highlight the possibility
of going far beyond the van ’t Hoff paradigm, thanks to
properly designed (active) nanochannels.

We believe that the advent of nanofluidics has a key role to
play in this regard, in order to identify new types of behaviors
which could be scaled-up to macroscopic membranes. The new
opportunities brought by nanofluidics in terms of the variety of
nanoscale geometries and materials, combined with state-of-
the-art experimental instrumentation, allows one to fabricate
and investigate fundamentally the transport in ever smaller
channels, with ever more complex and rich behaviors. Carbon
nanotubes, down to nanometric sizes73,138–140 can now be
manipulated and inserted in devices were water is flown
through – see Fig. 14a. Single nanopores can be carved or
etched in membranes that are only an atomic layer thick74 and
may be accordingly functionalized,141 see Fig. 14b. It is also
now possible to fabricate

:
Angström scale slits using graphene

sheets as spacers, reaching confinement thicknesses down to
B3 Å142,143 – see Fig. 14c.

Such nanofluidic technologies offer new possibilities in the
context of osmotic transport. They allow nearly molecular scale
designs, leading to various nanofluidic-specific effects which
may be key assets for new separation techniques and water
filtration: from specific ion exclusion effects87,138,140,143,144 with
a number of anomalous ionic effects to be investigated,145 to
extremely fast permeation of water, in particular through

carbon nanotubes.139,140,146–148 Also new types of nanoscale
membranes have also emerged recently, offering new designs
as compared to traditional membranes: for example, with
dedicated patterns of hydrophilic and hydrophobic regions;149

or tailor-designed DNA origami channels,86,150 and – last but
not least – the multilayer membranes of graphene (so-called
graphene oxide membranes).75,151,152

This constitutes a new and exciting playground, in which
osmotic phenomena may (and should) flourish in various
forms. We discuss in the next paragraphs two such examples:
the development of osmotic diodes, and an active counterpart
of osmosis, which both lead to tunable osmotic driving beyond
van ’t Hoff.

4.2 Osmotic diodes and osmotic pressure rectification

One of the successes of nanofluidics was to demonstrate the
possibility to design diodes for ionic transport, in full analogy
with their electronic counterpart.62,85,153 This takes the form of
a non-linear and rectified response for the ionic current versus
the applied voltage. Typically an ionic diode behavior manifests
itself in channels with an asymmetric design, e.g. an asym-
metric surface charge or an asymmetric geometry. Such beha-
vior is expected to occur in the regime where the Dukhin
number is of order one and asymmetric along the channel:154

the Dukhin number is defined here as Du = S/csh, where S is
the surface charge density, cs the bulk salt concentration and h
a characteristic channel dimension. It quantifies the impor-
tance of surface versus bulk electric conduction. As such ionic

Fig. 14 From nanoscale to
:
Angström scale pores. (a) Reproduced from

ref. 73. (top) Molecular dynamics representation of water flowing through a
transmembrane multi-wall boron-nitride nanotube and (bottom) trans-
mission electron microscope (TEM) picture of its experimental counter-
part. (b) (top) Molecular dynamics representation of a nanopore in a
mono-layer MoS2 membrane (in blue and yellow) and the salt (green
and red) in solution and (bottom) TEM picture of its experimental counter-
part, a 5 nm pore. Reproduced from ref. 74 with permission from Springer
Nature, copyright 2016. (c) (top) Molecular dynamics representation of
water and ions (orange and blue) flowing through a graphene slit with
7
:
Angström spacing. (Courtesy from Timothée Mouterde) (bottom) AFM

image of bilayer graphene spacers on top of the bottom graphite layer.
Inset: Height profiles yield an estimate of 7 Å for the thickness of spacers
made from 2 layers of graphene or 1 layer of MoS2 (the blue line shows the
scan position for the corresponding trace in the inset). Reproduced from
ref. 137 with permission from AAAS, copyright 2017.
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diodes may find interesting applications to boost osmotic power
generation under salinity gradients, see ref. 75 and Section 6.3.

Now, coming back to osmosis, the asymmetry of the design
may be expected to yield an asymmetric interaction of the
membrane with the electrolyte, hence an asymmetric push on
the liquid. It was shown in ref. 50 that such asymmetric geometry –
depicted in Fig. 15a – results in an osmotic diode, with a rectified
osmotic pressure versus the concentration gradient (non linear
dependence), furthermore tunable by the applied electric field.

The description builds on the previous mechanical views of
osmosis, in Section 2.4. The Stokes equation for fluid
motion writes

0 = �=p + Z=2u + re(�=Ve), (65)

with re = e(c+� c�) the charge density, c	 is the concentration of
positive and negative ions (assumed here as monovalent for
simplicity) and Ve is the electric potential. Following the same
steps as in Section 2.4 to integrate the fluid equations of
motion in the channel, the general relation between flow and
pressure takes the expression

Q = Lhyd � �D[p � Papp] (66)

where Lhyd is the channel permeance introduced above. The
apparent osmotic pressure between the two sides of the chan-
nel is accordingly defined as

DPapp ¼
1

A

ðð
dAdxre � �rVeð Þ (67)

with A the cross section of the pore, L its length. The ion
concentration profiles obey the Poisson–Nernst–Planck equa-
tions, coupling the diffusive dynamics to the applied electric
forces. In spite of the expected non-linear dependence of the
osmotic pressure in terms of driving forces, the symmetry in
the force balance and ionic transport equations, which was
highlighted in Section 2.4 and eqn (28) for the simplest
geometry, still holds. There is accordingly a linear relation
between the apparent osmotic pressure in eqn (67) and the
total surface ion flux js:

DPapp ¼ kBTDcs þ js �
L

D
: (68)

It is therefore expected that the rectifying behavior in the ion
flux, akin to the current diode, thus translates into a rectifying
osmotic pressure.

Solving the full equations in the geometry presented in
Fig. 15a yields a fluid flux:50

Q ¼Lhyd skBTDcs � Dp½ � þQS Dcs½ � exp
eDVe

kBT

	 

� 1

	 

(69)

where the reflection coefficient s is now a non-linear function
of the concentrations in both reservoirs and QS plays the role of
a ‘‘limiting fluid flux’’.50 The apparent osmotic pressure
DPapp = Q/Lhyd is plotted in Fig. 15. The rectification and
diode behavior versus concentration is weak for zero voltage but
strongly enhanced for higher applied voltage bias.

Examples of permeability rectification are actually numer-
ous in the biological world. They are harnessed e.g. in plant
cells135 or in animal cells.155–157 Surprisingly in all the studies
that we are aware of, entering flows are notably larger than
outer flows, and up to 10 times higher in some mammalian
fibroplasts.157 It is fascinating to see how most cells are there-
fore adapted to fill in faster than they would swell under the
same conditions, probably with a link to survival strategies. We
highlight that rectified osmotic flows could be used in a variety
of fields. In fact, Fig. 15b and the results reported in ref. 50,
demonstrate that water may be flown against the natural
osmotic gradient, with water flowing to the high salinity
reservoir, depending on the voltage applied. Furthermore,
under an oscillating electric field, with proper conditions, this
induced water flow against the natural osmotic gradient will be
maintained. This opens new perspectives e.g. for advanced
water purification strategies and active filtration with oscillat-
ing fields, as we discuss later.

4.3 Towards active osmosis

We discuss now a second class of examples of osmotic phe-
nomena that goes beyond the van ’t Hoff paradigm. As we
exhaustively discussed, the idea of osmosis is closely related to
semi-permeability and sieving – with the membrane playing the
role of a simple colander. However one may consider how the

Fig. 15 Osmotic rectification in an osmotic diode. (a) A nanochannel
presents an asymmetric surface charge with S 4 0 and �aS on the other
side with a a 1. The ions are therefore submitted to an asymmetric force
(between one side and the other, in colored arrows) that drives the
osmotic flow. Inspired from ref. 50. Apparent osmotic pressure DPapp

versus (b) salinity gradient Dn = nR � nL (where ni = ci/c0 is a normalized
concentration) and versus (c) applied voltage drop DVe = VR � VL (normal-
ized by kBT/e) as obtained from an analytical solution for the flows of all
species in the nanochannel. (b) and (c) are reproduced from ref. 50 with
permission from the APS, copyright 2013. More information can be found
in ref. 50.
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osmotic pressure builds up in membranes with time-dependent
pores: a pore which opens and closes over time – see Fig. 16 –
will exhibit a time-dependent size exclusion and sieving is thus
expected to generate an intermittent osmotic push on the fluid.
The resulting osmotic pressure is expected to be some time-
average of the push, which remains to be properly defined. But
injecting energy at the pore scale – here via the time-dependent
opening of the pore – may also lead to far-from-equilibrium
behaviors, allowing possibly to bypass the entropy bottleneck.
Osmosis across dynamically stimulated pores is therefore a
subtle problem, which requires proper microscopic foundations.
Beyond the fundamental question, adding the sieving frequency
as a new tuning parameter may improve separation and selec-
tivity properties of the membranes.158,159

The question of dynamic osmosis actually arises naturally in
biological pores, e.g. ion channels, since their shape is affected
by thermal fluctuations or demonstrates out-of-equilibrium
motion.161 The question of out-of-equilibrium osmosis was
discussed in the literature in the 1980s162 and a few molecular
dynamics studies were pursued,161,163,164 usually with a focus
on the specificities of the biological channels under scrutinity.
In fact, temporal dynamics of biochannels are strongly believed
to be connected to the selectivity properties of the channel. For
example, the fluctuations of the refined structure of the selec-
tivity filter of the KcsA channel is believed to be a key factor for
extremely refined passage of the potassium ion.161 Further,
such temporal dynamics of the structure may provide an
efficient alternative to simple steric sieving for selectivity. This
was noticed in the nuclear pore complex,160 where particles see
an effective translocation barrier which is dependent on their
diffusion properties (see Fig. 16b).

To our knowledge, there is no general framework discussing
the concept of ‘‘dynamic osmosis’’. Several simple models were
considered recently by the authors in ref. 158 and 159. Here we
illustrate a few basic concepts underlying this active osmosis
process and the opportunities that it offers.

In line with our previous discussion of osmotic phenomena,
it is particularly fruitful to address the question under the

perspective of the mechanical insights, where the pore with
fluctuating shape is modeled as a time-dependent energy bar-
rier, say U(x,t), using similar notations as previously. The average
osmotic force acting on the fluid is again obtained in terms of
the force acting on the fluid integrated over the channel size and
averaged over time. It writes within this framework

DPapp ¼
ð
dxcsðx; tÞ � ð�rxUðx; tÞÞ

� �
t

: (70)

where here h�it denotes a time average. As for the static (passive)
case, the Smoluchowski equation for the solute allows one to
rewrite the apparent osmotic pressure in terms of the solute flux
across the fluctuating barrier:

DPapp ¼ kBTDcs þ h jsit �
L

Ds
: (71)

It is interesting to note that the concept of osmotic force
DPapp connects directly to the question of translocation of
solute molecules across a fluctuating barrier – via the solute
surface flux js. That specific question was actually the topic of
an exhaustive literature in the context of ratchets, molecular
motors, or stochastic resonance.165,166 Numerous counter-
intuitive consequences were highlighted, both theoretically
and experimentally, like directed motion, ‘‘uphill’’ transport
against gradients, enhanced translocation, etc. Accordingly the
previous symmetry relation eqn (71) shows that the existence of
a finite flux hjsit, with possibly unconventional dependencies on
the concentrations in the reservoirs, will have consequences on
osmotic transport, i.e. leading to flow of the suspending fluid
itself and not only solute motion.

To illustrate this behavior, it is instructive to consider a
simple example, made of an asymmetric membrane as in
Fig. 17, which oscillates in time as an ‘‘on/off’’ process over a
time interval t/2 = p/o. When ‘‘on’’, the barrier height is
considered as much larger than the thermal energy. This
process bares similarities with the ratchet process in ref. 167
and subsequent references, where solute pumping was demon-
strated. In elementary terms, when the barrier is ‘‘off’’, solute
molecules from both sides diffuse freely (see Fig. 17b). Now,
when the barrier is back ‘‘on’’, solute that has crossed the
maximum point of the barrier will slide down to the opposite
side (see Fig. 17c). This process leads to a finite flux of solute
averaged over a period, hjsit, which can be exactly calculated in
the simple model considered, see ref. 168. For example, in the
quasi-static (low frequency) regime, the averaged flux reduces
in this simple system to

h jsit �o!0
Lo� C2 � d0 � C1 � ð1� d0Þ½ �; (72)

with C1 and C2 the solute concentrations in both reservoirs and
d0 the potential asymmetry, see Fig. 17. Beyond the specific
expression (restricted to this specific regime and model), this
result highlights the possibility of uphill solute transport
(pumping against concentration gradients) or enhanced solute
flux, depending on the direction of the concentration gradient
versus the pore asymmetry. This behavior is summarized in
Fig. 17d and e.

Fig. 16 Osmosis through out-of-equilibrium pores. (a) Illustration of a
pore with a time-dependent shape, where the inner pore size may be
either smaller either larger than the typical solute size. (b) Reproduced and
adapted from ref. 160 with permission from Springer Nature, copyright
2016. Representation of the spatiotemporal motion of grafted phenyl-
alanine–glycine nucleoporins (FG-Nups) inside the selectivity filter of the
nuclear pore complex. Small (resp. large) particles that diffuse fast (resp.
slow) see effectively the FG-Nups as static leaving small openings (resp.
moving and everywhere) and therefore encounter only a ‘‘small’’ energy
barrier for translocation (resp. large).
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Now inserting this result for the flux in eqn (71), one there-
fore predicts highly counter-intuitive behaviors for the osmotic
pressure, i.e. the driving force acting on the fluid. In Fig. 17d
and e, we have introduced and plotted the apparent osmotic
pressure

DPapp ¼ kBT C2 � C1ð Þ þ kBTL

Ds
� h jsit C1;C2;oð Þ (73)

based on the full solution of the simplistic previous model.
Notably this plot highlights the possibility of ‘‘resonant osmosis’’
for a characteristic frequency (in the form of an extremum of
sapp), but this simple model also suggests that – depending on
the direction of the potential asymmetry against the concen-
tration gradient – the rejection may be larger than unity (pump-
ing regime) or even decrease towards negative values.168

This points to a wealth of intriguing behaviors for osmotic
phenomena, which were barely explored up to now. As emphasized
above, the recent development of nanofluidics suggests many
routes to develop such active pores in artificial channels, e.g using
voltage-gated nanochannels169–172 or UV light173 or stimulated
surface chemical reactivity.174,175 Other externally controlled exist-
ing devices include thermally responsive nanochannels.176,177 The
challenge awaiting is to achieve such active control in yet smaller
devices to significantly impact water or ion transport.

The foundations of active osmosis remain therefore to be
properly investigated. The present discussion is merely an
appetizer to illustrate the abundance of ‘‘exotic’’ behaviors
which could be unveiled in this context.

5 From diffusio-phoresis of particles to
active matter

The previous sections showed how gradients of solutes induce
fluid motion in the presence of an interface via the diffusio-
osmotic phenomenon. Symmetrically when a (solid) particle is
suspended in a quiescent fluid, gradients of solute will induce
motion of the particle. This motion, called ‘‘diffusio-phoresis’’,
relies on the very same osmotic driving forces, occurring within
the interfacial layer at the particle boundary. The idea to
transport large particles harnessing osmotic forces appeared
first in the Russian literature with the works of Derjaguin and
Dukhin55,56,99 and was more thoroughly investigated in the
1990s.79,178,179 We refer to the review by Anderson in ref. 54 for
a dedicated discussion of the underlying transport mechanisms
and some of its subtle features.

Diffusio-phoresis and its consequences have gained
renewed interest for the last decade, highlighting an increasing
number of situations where this phenomenon is shown to play
a role, as well as dedicated applications in various domains.
Basically diffusio-phoresis occurs whenever there is a gradient
of solute or of a mixture of solutes and such situations are
ubiquitous.180,181 Here we summarize the main elements of the
phenomenon and focus on a number of elementary implica-
tions. More explicit applications will be discussed in the next
section, Section 6.

5.1 E pur si muove: from diffusio-osmosis to
diffusio-phoretic motion

The diffusio-phoretic velocity of a particle under a (dilute)
solute gradient writes as54

vDP = mDP � (�kBT=cN) (74)

Physically the phenomenon at stake is sketched in Fig. 18:
the solute gradient at the solute surface induces a diffusio-
osmotic slip velocity of the fluid (relative to the solid particle)
beyond the interfacial diffuse layer; the particle is put in motion
in order to precisely negate the corresponding velocity. For
spherical particles, the value of the mobility mDP defined in
eqn (74) identifies with minus the corresponding diffusio-
osmotic mobility, as given previously in Section 3.1:

mDP = �mDO. (75)

For example, for a solute interacting via a potential U with
the particle, the diffusio-phoretic mobility is minus the mobi-
lity in eqn (41):

mDP ¼ �mDO ¼ �
1

Z

ð1
0

z exp
�UðzÞ
k0T

	 

� 1

	 

dz: (76)

Interestingly, provided the value for the diffusio-osmotic
mobility is constant over the particle’s surface, it was shown
by Morrison that this result holds for any particle shape (the
argument is valid for any interfacially driven transport54,183).

5.1.1 Phoresis in the thin layer limit. Summarizing
briefly the derivation, eqn (76) is obtained by separating the

Fig. 17 Active membrane as a pump (or sink). (a) An asymmetric potential
barrier (representing the membrane acting on the solute) separates two
solute reservoirs with different concentrations. (b) As the barrier is tem-
porarily lowered, the solute may diffuse inwards from both sides. (c) If the
barrier is risen back, the solute that has diffused beyond the maximum
point of the energy barrier will be carried to the other side. In the example
shown here, more solute from the lower concentration side has traversed
beyond the maximal point. This solute is then transported to the
highly concentrated side. The active membrane therefore acts as a pump.
(d and e) Apparent rejection coefficient as obtained from the on/off energy
barrier model described in the text.168 The normalizing frequency is
o0 = Ds/L

2, and the asymmetry parameter is here d0 = 0.1. Insets indicate
the solute concentration on both sides; Dcs = C2 � C1; for (d), C1 = 0.4C0

and C2 = C0 where C0 is some arbitrary concentration and for (e) C1 = C0

and C2 = 0.1C0.
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diffusio-osmotic driving, which occurs at the particle surface
within the diffuse layer of thickness l, and the far-field flow
occurring beyond the diffuse layer. Following the prediction in
Section 3.1, the near-field diffusio-osmotic flow results in a
diffusio-osmotic ‘‘slip’’ velocity of the fluid relative to the
particle, with amplitude mDO � (�kBT=cs)t, where the index t
refers to the tangential component along the particle surface.
The concentration gradient in the vicinity of the surface (=cs)t is
related to the far concentration field cs. It obeys Ficks’s equa-
tion =2cs = 0 together with the boundary condition at infinity
fixing the concentration gradient, cs(r - N) C zrcN, with z
the coordinate along the direction of the gradient. This gives (in
spherical coordinates):

csðr; yÞ ¼ Rrc1
r

R
þ 1

2

R

r

	 
2
!
� cos y (77)

outside of the diffuse layer; with r, y the spherical coordinates.
Back to the flow, the velocity field outside the diffuse layer
obeys the Stokes equation

Z=v � =p = 0, (78)

with the boundary conditions on the particle given by the
tangential slip velocity and at infinity given by the uniform
flow field

v r ¼ Rþð Þ ¼ �3 sin y
2

vslipt; & vðr!1Þ ¼ �vDP (79)

in the particle frame of reference; vslip = mDO � (�kBTrcN),
R+ E R + l denotes the position on the particle surface but located
beyond the diffuse layer (here considered as infinitesimal); t is the
tangential vector on the particle’s surface. To lowest order, the

solution to the previous equations results in a flow dominated by
a Stokeslet

vr ¼ �vDP cos yþ
F

4pZ
cos y
r
þ O

1

r3

	 


vy ¼ vDP sin y�
F

8pZ
sin y
r
þ O

1

r3

	 
 (80)

where F = 6pZR(vDP + vslip). As can be easily verified, F identifies with
(minus) the force acting on the particle. At steady-state, the particle
is moving with a constant velocity vDP and no force acts on it.
Accordingly, the diffusio-phoretic velocity vDP is fixed by imposing
F = 0 and this results in eqn (74). This shows implicitly that the far
velocity profile scales like 1/r3 and can be rewritten as in ref. 54

vlðrÞ ¼
1

2

R

r

	 
3

3
rr

r2
� I

h i
� vDP: (81)

where we came back to the lab frame of reference, vl(r) =
v(r) � vDP. Accordingly, the hydrodynamic interaction between
particles undergoing diffusio-phoretic transport is weak, in contrast
to e.g. gravity driven transport where the fluid velocity scales like 1/r
far from the particle. This has important consequences for the
phoretic transport in confinement.54,184,185

5.1.2 Osmotic force balance on particles. Let us come back
to the force balance underlying diffusio-phoresis. We empha-
sized above that diffusio-phoresis, like any interfacially driven
transport, is a force-free motion: the particle moves without any
force acting on it, i.e. the global resulting force acting on the
particle vanishes.54 This has counter-intuitive consequences
and led to various mis-interpretations and debates concerning
osmotically-driven transport of particles,186–191 in particular in
the context of phoretic self-propulsion (see Section 5.3 and
ref. 192). We thus take the proper space here to discuss the
osmotic force balance.

A naive interpretation of diffusio-phoresis is that the particle
velocity vDP under a solute gradient results from the balance of
Stokes’ viscous force Fv = 6pZRvDP and the osmotic force
resulting from the gradient of the osmotic pressure integrated
over the particle surface, hypothetically scaling as Fosm B R2 �
RrP. Balancing the two forces one finds a phoretic velocity

behaving as vDP � R2kBT

Z
rc1. Looking at the expression for

the diffusio-phoretic mobility in the thin layer limit, eqn (74)
and (76), the latter argument does not match the previous
estimate by a factor of order (R/l)2, where l is the range of
the potential of interaction between the solute and the particle.

The difference between the two scalings originates in the fact that
for interfacially driven motion, the velocity gradients occur mostly
over the thickness l of the diffuse layer, and not on the particle size
R, as e.g. for the Stokes flow. More fundamentally, this raises the
question of how osmotic pressure is expressed: the existence of a
difference of solute concentration between the two sides of the
colloidal particle does not obviously imply the existence of a
corresponding osmotic pressure and this belief led to much
confusion. The argument above based on the global force
balance is globally flawed and needs to be properly clarified.

Fig. 18 From osmosis to phoresis. (a) Under a concentration gradient, a
particle is put into motion via diffusio-osmosis occurring at its surface.
(b) Time-stamped stream lines of decane droplet migration towards a
hydrogel beacon initially loaded with sodium dodecyl sulfate (SDS), acting
as a long-range solute source. Adapted from ref. 182 with permission from
the United States National Academy of Science, copyright 2016. The scale
bar is 100 mm. (c) Diffusio-phoretic transport of fluorescent l-DNA under a
LiCl gradient (Dcs = 100 mM over a range of 800 mm, highest concen-
tration being up), scale bar is 100 mm. Images at 100, 150, 200 and 300 s.
Adapted from ref. 77.
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In his exhaustive work in ref. 191 following the debate of
ref. 186–190, Brady tackled the question based on a ‘‘micro-
mechanical’’ analysis of the solute and solvent transport in the
presence of the colloidal particles.

However, in order to properly solve the riddle and reconcile the
various approaches, one needs to go into the details of the force
distribution and write properly the force balance on the particle
undergoing diffusio-phoretic transport. It is accordingly interesting
to relax the hypothesis of a thin diffuse layer, and consider more
explicitly the transport inside the diffuse layer, as was explored by
various authors, using e.g. controlled asymptoptic expansions.193–195

General results for the hydrodynamic flow and mobility can
be obtained without assuming a thin diffuse layer. We consider
that the interaction between the solute and the particle occurs
via a radially symmetric potential U(r), so that the Stokes
equations now writes

Z=2v � =p + cs(r)(�=U) = 0. (82)

The boundary conditions are now replaced by the no-slip bound-
ary condition on the particle’s surface, as well as the prescribed
velocity at infinity (in the frame of reference of the particle):

v(r = R) = 0 and v(r - N) = �vDP (83)

The concentration profile obeys a Smoluchowski equation in
the presence of the external potential U(r), in the form

0 = �=�[�Ds=cs + lscs(�=U)] (84)

with the boundary condition at infinity accounting for a constant
solute gradient cs(r - N) C r cos yrcN (convective transport is
neglected here). Given the symmetry of the problem, the solution
takes the general form cs(r,y) = c0(r)cosy, with c0 scaling with the
gradient at infinity as c0 p RrcN. Altogether this is a self-
consistent equation for the solute concentration field. It should
therefore be considered as a source term for the fluid transport
eqn (82). For large distances to the particle (r c l), it reduces to
the previous result in eqn (77).

Interestingly, the solution of eqn (82) for the velocity profile
can be calculated exactly for any radially symmetric potential
U(r), by extending textbook techniques for the Stokes problem
in ref. 96; see also ref. 196 for a related calculation in the
context of electro-phoresis. It can be demonstrated that the
solution for v(r) still takes the same form as in eqn (80), but the
force along the axis of the gradient appearing in the Stokeslet
term (v B F/r) term now takes the expression

F ¼ 6pRZvDP � pR2

ð1
R

c0ðrÞ �@rUð ÞðrÞ � jðrÞdr (85)

with jðrÞ ¼ 2

3
3
r

R
� 2

r

R

� �2
�R
r

	 

a dimensionless function, the

factor
2

3
originating from the angular average. The diffusio-

phoretic velocity results from the force-free condition, F = 0,
and therefore it writes

vDP ¼
pR2

6pZR

ð1
R

c0ðrÞ �@rUð ÞðrÞ � jðrÞdr (86)

Remembering that c0(r) p RrcN, this equation generalizes
the previous result obtained in the thin layer limit.

At first sight, eqn (85) and (86) appear as a force balance
between the Stokes friction 6pRZvDP and the osmotic force, here
written in terms of the local force c0(r)(�qrU)(r) integrated over
the particle surface (and potential range). The latter represents
the push of the solute molecules on the particle. Actually,
eqn (86) is very similar to eqn (2.7) in ref. 191, with the
r-dependent term pR2 � j(r) replaced in ref. 191 by the prefactor
L(R). However the integrated ‘‘osmotic push’’ is weighted here by
the local factor j(r) (in contrast to ref. 191) and this detail
actually changes the whole scaling for the mobility.

Indeed in the thin diffuse layer limit, with r � R B l { R,
then one may expand j(r) C �2(r � R)2/R2, while the concen-
tration profile c0(r) can be approximated as

c0ðrÞ ’ Rrc1 �
r

R
þ 1

2

R

r

	 
2
" #

exp �UðrÞ=kBT½ �: (87)

One may then verify that the above eqn (86) indeed reduces
to the results in eqn (74) and (76) predicted by the thin layer
approach. In other words, the weight j(r) B l2/R2 is a signature
of the fact that the velocity gradients occur on the potential
width l and not on the particle size R. An osmotic pressure is
indeed expressed at the particle’s surface and yields diffusio-
phoretic transport, but in a very subtle way which does not
reduce to considering only the direct solute force. This corrects
the naive argument suggested at the beginning of the section.

The exact calculation above also allows one to gain key
insight into the local force acting on the particle. The latter is
the sum of the hydrodynamic shear force, normal pressure and
direct interaction with the solute. Using the exact results for the
velocity profile in the thin layer regime, l { R, one predicts

fr ¼ 3LsR
2kBTrc1 cos y

fy ¼
3

2
LsR

2kBTrc1 sin y
(88)

where Ls ¼
Ð1
R

e�bUðxÞ � 1
� �

dx has the dimension of a length
and quantifies the excess adsorption on the interface. Eqn (88)
can be recovered easily with a simplistic argument: one expects
this osmotic force to scale as VintrP = Vintr(kBTcN) where
Vint is the interaction volume. Writing Ls the typical interaction
lengthscale we have Vint E 4pR2Ls, leading accordingly to
eqn (88). While the integrated total force does vanish as
expected, the osmotic gradients do generate an inhomoge-
neous local tension on the surface of the particle, as plotted
in Fig. 19a. Accordingly, if one considers that the particle is
elastically deformable, such tensions would generate a defor-
mation of the particle following the shape sketched in Fig. 19b.

The situation is very different for electro-phoretic transport.
As was first discussed in ref. 197, for electro-phoresis there is a
local force balance between the direct electric force acting on
the particle and the hydrodynamic shear acting on its surface:
accordingly the local force simply vanishes identically. In
physical terms, this is due to the fact that the electric force
acting on the colloid particle exactly balances the electrical
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force acting on the electric double layer because of local
electroneutrality (the charge in the electric double layer being
exactly opposite to the surface charge). This can be actually
verified explicitly by extending the previous calculations to
electro-phoresis. This can be performed for weak electrostatic
potential along the lines in ref. 196, and it predicts indeed a
vanishing local force.

Accordingly, particles undergoing electro-phoresis are not
expected to deform, in contrast to diffusio-phoresis which leads
to local deformations. Such results remain to be experimentally
studied in order to observe the modification of a particle
conformation undergoing diffusio-phoretic drift. We note how-
ever that in the context of thermo-phoresis, DNA was reported
to stretch under a temperature gradient.198 Such effects could
have interesting applications in the context of separation of
particles, since their shape will differ depending on their size.

As a last comment, the previous discussion neglected
surface transport at the surface of the particle: this involves
convection of solute in the interfacial region, but also fluid
slippage at the particle surface, which will both affect the
steady-state concentration field of the solute around the particle.
This leads to corrections to the mobility as a function of a
(properly defined) Péclet number, as introduced in ref. 68, 69,
193 and 199.

5.1.3 The diffusio-phoretic mobility. Let us now focus on
the mobility. As for diffusio-osmosis, the diffusio-phoretic
mobility scales as mDP E 	l2/Z where l is the thickness of
the interfacial layer. For electrolytes, the latter identifies with
the Debye layer thickness and one expects accordingly that
mDP B 1/cs so that one usually writes the diffusio-phoretic
velocity under salt gradients as:

vDP = DDP= log cs (89)

The diffusio-phoretic mobility DDP has now the dimension
of a diffusion coefficient. According to the previous estimates,
one expects for electrolytes that DDP E kBT/(8pZcB) with cB the
Bjerrum length, so that the value for DDP is expected to be in the
range – though slightly smaller – of diffusion coefficients of
molecules (thus far larger than any colloid diffusion coeffi-
cient): experimentally typical values for DDP are in the range

DDP B 0.1–1 � 10�10 m2 s�1.78,200 Note that, as for diffusio-
osmosis, diffusio-phoresis under electrolyte gradients with unequal
diffusion coefficients for the anions and cations (D+ a D�) has an
electro-phoretic contribution similar to eqn (47) which can become
quantitatively predominant; see also ref. 54. The expression in
eqn (89) highlights a ‘‘log-sensing’’ behavior, similar to that
observed in bacteria, e.g. in E. coli.201 It is at the basis of various
unconventional transport phenomena which we discuss below.

Aside the case of electrolytes, other classes of relevant inter-
actions involve steric exclusions – e.g. for neutral polymers – for
which the mobility is expected to scale as mDP = Rp

2/Z with Rp the
excluded particle diameter of the solute.54,115,202

On the experimental side, diffusio-phoresis has been investi-
gated in numerous studies. First measurements were performed
by the Russian school,56 and later by Prieve, Anderson and
collaborators in the 90’s.178,179 However the development of
microfluidics over the last two decades has allowed to develop
dedicated systems in which concentration gradients are perfectly
controlled and tunable. It was then possible to measure diffusio-
phoretic motion and obtain further insights into the phenom-
enon and its consequences.21,77–79,200,203–207

While the above discussion assumed implicitly a dilute
solute, the phenomenon is expected to occur under gradients
of mixtures, and is denoted as solvo-phoresis.79 This was for
example investigated in a recent study by Paustian et al.,21 who
showed that polystyrene colloids undergo motion in gradients
of water-ethanol mixtures. The velocity of the particles was
shown experimentally to obey

vDP = DDP= log X (90)

where X is the ethanol molar fraction, thus pointing to non-
ideality effects. It would be interesting to disentangle the
contribution of the dependence of the interfacial thickness
with the molar fraction. As a final remark, a slightly different
phenomenon is the so-called osmo-phoresis, which is obtained
for permeable particles in which their interface plays the role of
a semi-permeable membrane and reported in ref. 208.

5.2 Harnessing diffusio-phoresis: membrane less separation,
log-sensing and localization

In this section we highlight a number of chosen examples to
illustrate the impact and the applications of diffusio-phoresis
in diverse physical situations. An interesting feature of diffusio-
phoresis is that complex patterns of solute gradients can be
rather easily achieved – in relative contrast to electric fields as
driving forces – so that this phenomenon can induce particle
motion in quite subtle ways leading to a wealth of counter-
intuitive behaviors. Such solute patterns may occur naturally,
for example due to evaporation leading then to drying film
stratification,202 in membrane fouling,207 or at dead-end pores,
allowing for boosted extraction of particles in porous media,209,210

as well as in hydrothermal pores with steep pH gradients.181

Alternatively static or dynamic patterns of solutes can be designed
thanks to dedicated microfluidic devices.78,203 An illuminating
example was reported recently in ref. 182, showing that ‘‘chemical’’
beacons emitting solutes may allow to engineer ultra-long range

Fig. 19 Local force acting on a diffusio-phoretic sphere. (a) Local force
field acting on a sphere experiencing diffusio-phoresis with absorption at
its surface in a solute gradient. The local force is plotted with an arbitrary
factor amplitude factor (the same for each vector) and projected in the 2D
plane; (b) potential resulting deformation of the sphere, axisymmetric view,
when the deformation is assumed to be proportional to the local force.
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nonequilibrium interactions between particles, up to millimeters –
see Fig. 18b.

Instead of being exhaustive, we discuss here several ‘‘ele-
mentary mechanisms’’, which serve the purpose of highlighting
the versatile manipulation of particle assemblies via diffusio-
phoretic motion.

Boosting migration. As a first example, we highlight how
diffusio-phoretic transport leads to strongly enhanced migra-
tion of particles, with the fast solute ‘‘towing’’ the large, slow,
particles. This effect was demonstrated in particular in coflow
geometries, such as in Fig. 20, which was considered in various
papers.200,205,206,211 This geometry is quite generic in micro-
fluidics in the context of mixing and serves here the purpose
of highlighting consequences of diffusio-phoretic motion.
Colloids have a low diffusion constant and therefore barely mix
in such a geometry, see Fig. 20a. Adding tiny amounts of salt,
typically millimolars, drastically boosts colloid dispersion – see
Fig. 20b and c – with an observed effective diffusion coefficient of
the colloids which is 10 to 100 times larger than the equilibrium
diffusion coefficient. As mentioned earlier, this is a consequence of
diffusio-phoretic motion of the colloids under the salinity gradients
present across the various parts of the channel. This can be
rationalized on the basis of simple arguments. The growth rate

for the width of the colloid suspension writes as dw/dt = 2vDP =
2DDPr log cs, with cs the inhomogeneous salt concentration. The
latter relaxes via Fick’s diffusion andr log cs � 	1

� ffiffiffiffiffiffiffi
Dst
p

(the sign
depending on the salt gradient direction), so that

dw

dt
� 	2DDPffiffiffiffiffiffiffi

Dst
p : (91)

Note that in the experiments of Fig. 20, the effective time is
related to the position z along the channel as t = z/U (U the
average flow velocity). Integrating this equation yields immediately
the observed diffusive like behavior,

wðtÞ � w0 ¼ 	
ffiffiffiffiffiffiffiffiffiffiffiffi
2Deff t

p
: (92)

with a diffusion coefficient Deff C DDP
2/Ds. Quantitatively Deff is of

the order of a (fraction of) salt coefficient Ds so that Deff c D0 (the
colloid diffusion coefficient) and colloids ‘‘diffuse’’ much faster in
the presence of (even minute) concentration gradients. Similar
behaviors in equivalent geometries have been reported under CO2

gradients205,211 or polymer gradients.206

Localization. As a second example, diffusio-phoretic motion
can be harnessed to manipulate and localize particle assem-
blies. Interestingly in the biological world, bacteria are capable
of using solute contrasts to localize proteins.212 Localization is
then used as an information for further vital processes, for
instance localization of the ring of the FtsZ protein at midcell is
used for cellular division.213,214 Similar features can be
obtained on the basis of diffusio-phoresis under salt gradients,
harnessing the log-sensing feature discussed above in eqn (89),
and leading to particle accumulation.77,78 Indeed, under a
linear salt concentration gradient, the diffusio-osmotic velocity
is not uniform and will be larger in regions of lower salt
concentration – see Fig. 21a. Alternating the gradient over time
leads to rectification of diffusio-phoretic motion and accumu-
lation of the colloids towards e.g. the center of the cell, as
highlighted in Fig. 21b. It is interesting on this elementary
example to formalize the rectification process. The colloid and
salt equations of transport obey the coupled Smoluchowski and
diffusion equations

@tr ¼ �= � �D0=rþDDP=½log cs� � rð Þ

@tcs ¼ Ds=
2cs

(93)

with r the colloid density and cs the salt concentration; D0 and
Ds are the particle and salt diffusion constants and DDP the
particle diffusio-phoretic mobility. Let us simplify the geometry
to fix ideas and consider a one-dimensional channel. We
consider an oscillating salt concentration profile, rcs(x,t) =
f (t)Dcs/c, with c a characteristic length scale and f (t) an
oscillating function of time with zero average. Averaging over
the rapid salt concentration oscillations, the mean diffusio-
phoretic velocity which enters the Smoluchowski equation
simplifies to %vDP = DDPhr[log cs]it E �DDP(h f 2it/c2) � x, where
x is the distance to the center of the cell and h�it an average over
time. It can be rewritten in terms of an effective potential via

%vDP � m0 � �qxUeff, (94)

Fig. 20 Harnessing diffusio-phoresis to transport particles. (a and b)
Adapted from ref. 200. Fluorescent colloids are injected in the central
branch of a microfluidic channel with three branches, with the same inlet
velocity. They are imaged at different positions along the channel (side). In
case (a) all channels have the same buffer composition (control), whereas
in (b) salt (typically 10 mM of NaCl, LiCl or KCl) is added to the side
channels. Although little dispersion is seen in case (a) due to the low
diffusivity of colloids, a strong migration towards the high salinity is
observed in (b). The horizontal scale bar is 50 mm. (c) Dispersion of a dye
(Rh6G, 50 mM) at a cross-section of a microfluidic system with three
branches similar to (a). The dye enters the central channel and the side
channels are filled with polymer (5 wt% Ficoll 400 K) for the spreading
experiment (control, without polymer). Adapted from ref. 206 with per-
mission from Springer Nature, copyright 2017. (d) Spatio-temporal evolu-
tion of particles upon exposure to CO2 gradients (CO2 is flown above and
below, in x = 	L). The particles are polystyrene, diameter 0.5 mm, dispersed
in a liquid buffer, and L = 400 mm. Adapted from ref. 205, image under
Creative Commons Attribution 4.0 International License.
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with m0 = D0/kBT the colloid mobility and

UeffðxÞ ¼
kBT

2
f 2
 �

t

x2

s‘2
; (95)

with s‘ ¼
‘

2

ffiffiffiffiffiffiffiffiffi
D0

DDP

r
� ‘. This illustrates that the rectified diffusio-

phoresis of the colloids can be interpreted in terms of a harmonic
trapping potential towards the central node (x = 0) of the
solute concentration oscillation pattern. This allows one to
manipulate the colloidal population via time-dependent solute
gradients.

Alternative routes for focusing colloidal populations were
proposed using diffusio-phoretic transport without the require-
ment of time-dependent fields80 – see Fig. 21c. These make use
of combined steady gradients of salt and pH which are shown
to yield localization of the particles. The interpretation of this
subtle phenomenon incidentally highlights that the effects of
gradients cannot be simply superimposed for diffusio-phoresis
and a new formulation of coupled diffusio-phoretic transport
was required, rewriting the driving solute gradients in terms of
the corresponding ion fluxes. Such combination of gradients of

pH and salts was suggested to occur in hydrothermal pores,
with potential consequences on the emergence of an ion-
gradient-driven early protometabolism and the origin of
life.181 Finally focusing of colloidal particles was demonstrated
in dead-end pore geometries,210 with potential applications to
preconcentration, separation, and sorting of particles.

Osmotic shock. As a last example, we discuss a very striking
and counter-intuitive behavior stemming from log-sensing,
coined as osmotic shock, which was discussed in ref. 77. It
illustrates that diffusio-phoresis keeps a long-lasting ‘‘memory’’ of
solute gradients, even when they would be expected to be already
homogenized. Consider a situation where the colloids are spread
in a reservoir with lateral size c, with initially a uniform solute
concentration c0. Then at time t = 0, solute is flushed at the
boundaries, cs(x =	c/2, t) = 0 for t 4 0 (simplifying to 1D, and x is
the coordinate from the center of the reservoir). After a short
transient, the solute concentration profile will decay to zero
according to cs(x,t) C c0 exp[�t/t]cos(px/c), with t = c2/Ds the
diffusion timescale of the solute. The diffusio-phoretic velocity of
the colloids then writes vDP = DDP � r log c(x,t), so that

vDP ¼ DDP �
p
‘
tan

px
‘

� �
� DDP �

p2

‘2
� x; (96)

pointing towards the center of the reservoir, x = 0, hence gathering
the colloid population towards this position. From eqn (96) it is
clear that the DP velocity is therefore independent of time! This
leads to the counter-intuitive result that diffusio-phoretic motion
occurs on far longer timescales than the solute diffusion time-
scale. This behavior was highlighted experimentally in ref. 77,
where diffusio-phoretic motion of colloid particles was observed
on timescales ten times longer than the naive diffusive timescale
for the salt. Log-sensing is an efficient approach to localize
colloids, but its application for trapping of other types of particles,
e.g. polymers, remains to be explored. This could possibly be
harnessed to improve sensors or traps for high throughput
chemical reactions.215 Applications to information storage and
retrieval could also be explored.216 Log-sensing also helps remove
particles or fluids trapped in dead-end pores, as we will discuss in
Section 6.4.

As a final word on this section, the role of diffusio-phoretic
transport in biological context has yet to be readily explored
and quantified. In the toolbox of living systems, concentration
gradients play a versatile role, readily exploited in many aspects
of the biological machinery, such as energy reservoirs, but also
serving more sophisticated functionalities, associated with
spatial signaling, localization and pattern formation at the
various scales involved in the biological processes. One may
cite e.g. enzyme transport,217 protein localization in bacteria212

or more generally in spatial cell biology the use of concen-
tration patterns for positional information,218–220 to quote a
few. Obviously chemotaxis in biological organisms under solute
gradients is a highly complex phenomenon stemming from the
interplay of complex signalling pathways, quite far from the
simple diffusio-phoretic transport discussed here. But one may
reversely remark that the consequences of diffusio-phoresis as
a physical phenomenon cannot be overlooked in biological

Fig. 21 Focusing particles with diffusio-phoretic transport. (a) Trajectories
of two (yellow) particles starting at different lateral positions upon an
alternating concentration gradient. As the diffusio-phoretic velocity scales
logarithmically with solute concentration, the particles closer to lower
concentrations move faster, resulting in localization of the particles at the
center. (b) Alternating fluids are flushed on both sides of a circular
microfluidic well containing fluorescent colloids. The concentration of
LiCl in the two side channels alternates (left/right) with period 480 s,
between buffer alone and 100 mM. The scale bar is 200 mm. (left) Initial
particle distribution in the well and (right) stationary colloid distribution
under the alternating concentration gradient. Reproduced from ref. 77.
(c) Diffusio-phoresis under combined steady pH and salt gradients. Flowing
NaOH and HCl solutions separately in two reservoir channels establishes a
gradient in pH from 3.3 (left) to 10.7 (right), within which diffusio-phoretic
particles proceed monotonically to the right. A NaCl gradient is super-
imposed on the pH gradient inducing diffusio-phoresis to the left. Stream-
line images reveal unexpected focusing at a location within the channel.
Adapted from ref. 80 with permission from the APS copyright 2016.
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materials, especially in the presence of ubiquitous gradients.
This has been barely explored.221

5.3 From self-propulsion to self-assembly

Beyond the idea of passive diffusio-phoresis, where particles
move under externally imposed solute gradients, arose the idea
that the solute concentration gradients could be generated on
the particle themselves, e.g. via chemical reactions occurring at
their surfaces. For an asymmetric chemical reactivity, this self-
diffusio-phoresis process thus generates self-propulsion of the
particles, fueled by the chemical reactions.192,222,223 Together
with other phenomena leading to self-propulsion, this triggered
the emergence of the field of active matter, which has exploded
over the last decade. It is not our purpose to review this field, as
this goes beyond the scope of our focus on osmotic forces and
we refer to some recent reviews on this topic.223–225 We however
highlight here a few phenomena where osmosis, via diffusio-
phoresis and related mechanisms, is explicitly at play.

Self-diffusio-phoresis. On the experimental side, the phenom-
enon of self-diffusio-phoresis was pioneered by Paxton and
coworkers,226 who showed self propulsion of Platinum/Gold
nanorods in hydrogen peroxide. Hydrogen peroxide is chemically
transformed differentially on both metals, either forming or being
depleted on each side of the rod, and this creates a gradient of the
reacting specie (here hydrogen peroxide) driving diffusio-phoresis,
see Fig. 22. For such bimetallic particles with redox reactions on
both sides of the particle, self-electro-phoresis may actually
contribute to the driving force, via motion of charges (electrons
and ions) within and outside the particle. Self-diffusio-phoresis
was further demonstrated in colloidal janus particles of various
materials, see ref. 227–236, and ref. 224 and 237 for a more
exhaustive literature on this aspect.

On the theoretical side, the mechanisms by which the
creation or removal of species on the particle’s surface generate
an osmotic pressure gradient and motion are not obvious and there
has been some initial debate on this question, see ref. 186–190. This
echoes directly our discussion about the diffusio-phoretic force

balance in Section 5.1.2. Actually the question was pioneered by
Lammert et al. on the putative self-electro-phoresis of biological
cells or vesicles driven by non-uniform ion pumping across the
bounding membrane.238 Echoing this situation, an illuminating
model for self-propulsion via asymmetric osmotic driving
force was introduced by Golestanian et al.111,239 They considered
a particle exhibiting a non-uniform chemical reactivity on its
surface, as defined by the corresponding solute flux on its
surface a(r) = �Drr>Creact (corresponding to the generation or
consumption of the solute by the chemical reaction), Dr being
the diffusion constant of the reactant. This boundary term is
coupled to the diffusive dynamics of the solute concentration in
the bulk. The resulting concentration gradient induces a
diffusio-osmotic slip velocity vDO at the surface, depending on
the position, and accordingly particle motion. In the case of a
janus sphere, exhibiting a contrasting chemical reactivity on its
two moieties, the self-diffusio-phoretic velocity V takes the
simple expression

V ¼ hvDOisphere ¼
1

8Dr
a� � aþð Þ mþ þ m�

� �
(97)

where a	 is the chemical reactivity on the two sides and m	 the
local surface phoretic mobility. We emphasize though that on
the experimental side, other mechanisms also contribute to the
motion of catalytically self-propelled particles, like self-electro-
phoresis.192

To some extent, such ‘‘active particles’’ mimick self-propelled
biological organisms. The possibility to fabricate artificially these
systems constitutes a playground to study far-from-equilibrium
behaviors.224 Because active particles consume energy at a local
scale, their collective behavior is a priori not constrained – at least to
some extent – by thermodynamics and may possibly allow to break
the bottleneck of the second principle; cf. the beautiful example of
the rotating Feynman ratchet with active materials in ref. 240.

Active suspensions. Such active particles have fascinating
behaviors, and we focus on a few examples. First, self propulsion
leads to ballistic motion on short timescales, but orientational
random motion leads to diffusive behavior on long timescales, in
a way similar to the so-called ‘‘run and tumble’’ motion of
bacteria. The effective diffusion coefficient is however far larger
than the bare diffusion coefficient based on the Stokes–Einstein
estimates D0,228,229 see Fig. 22b. As a rule of thumb the effective
diffusion coefficient is typically Deff E V2 � tR, where V is the self-
propelling velocity and tR is the timescale for rotational Brownian
motion: tR B Drot

�1 B R2/D0, where Drot is the rotational diffusion
coefficient, R the particle size. As a consequence the particles
behave as a ‘‘hot’’ bath, with a high effective temperature defined
from a ‘‘fluctuation–dissipation’’ – like relation as kBTeff = Deff/m0,
where m0 = D0/kBT the bare particle mobility, so that

kBTeff � kBT �
V2tR
D0

(98)

(up to numerical prefactors). Altogether this predicts that
Teff/T B Pe2 where the Péclet number is defined in terms of the
self-phoretic velocity as Pe = VR/D0. This prediction was further
confirmed experimentally.229

Fig. 22 Self-propelled particles. (a) Chemical reactions occur differen-
tially at the front and at the rear of a reactive colloidal particle, thereby
inducing a chemical concentration gradient. This leads to diffusio-osmotic
driving at the surface, hereby displacing the particle. (b) Experimental mean
squared displacements DL2(Dt) and 2D trajectories (inset) for bare (blue)
and active colloids (red) in 7.5% H2O2 solution. Bare colloids (bottom) show
standard diffusion (DL2 linear in time), while the mean squared displace-
ment of active colloids shows a ballistic motion at small timescales and a
diffusive motion at longer timescales. The measured diffusion coefficients
are D0 = 0.33 mm2 s�1 for bare and Deff = 1.9 mm2 s�1 for active colloids.
Reproduced from ref. 229 with permission from the APS, copyright 2010.
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Osmotic pressure of active suspensions. The question of the
osmotic pressure created by active particles was raised in a
number of theoretical and experimental works.234,241–244 As we
introduced above, the osmotic pressure acting on the fluid can
be defined mechanically via the average force exerted by the
active particles on a semi-permeable wall. In the case where
the active particles exhibit a Boltzmann-like equilibrium in the
presence of the wall (say, represented by an external potential),
as shown e.g. for sedimentation profiles,229 then the osmotic
pressure reduces to the van ’t Hoff law, except that the
temperature is replaced by the effective temperature of the
suspension:

DP C kBTeff � Dr (99)

where r is here the concentration of active particles, and
the effective temperature Teff was introduced above. This
matches the equation of state measured using sedimentation
profiles.234

However Boltzmann-like equilibrium is expected to fail in
some limiting situations for active particles. In particular it is
commonly observed that self-propelled particles do hit ‘‘com-
pulsively’’ hard surfaces, similarly to a fly on a window:240 in
such cases, the particle remains stuck at the membrane’s
surface until it reorients, and there is a non-Boltzmannian
accumulation of particles at the membrane. This is nicely
exemplified in the run-and-tumble model under an external
field, where strong deviations from the Boltzmann profile is
predicted when the typical drift velocity Vd = m0Fext (with Fext the
maximum external force, say, due to the separating membrane), is
larger than the particle self-propulsion speed V.245 This situation
occurs for steep potentials. When such accumulation occurs, the
corresponding osmotic push will differ from the simple van ’t Hoff
law, see ref. 243 and 244. In particular, the osmotic pressure
depends on the properties of the membrane itself and its inter-
action with the particles – typically via the ratio between the typical
membrane characteristic steepness and the particle mean-free
path,244 in strong contrast to the van ’t Hoff ‘‘universal’’ relation.
Similar deviations from the van ’t Hoff law also occurs when the
interaction between the active particles and the membrane involves
wall-induced rotational torques.242

Towards self-organization and self-assembly. Another inter-
esting feature of particles propelling via self-diffusio-phoresis is
that they interact via chemical signaling. Propelled particles act
as a beacon – similarly to the situation considered in ref. 182 –
and leave a ‘‘trace’’ of their passage in the form of a diffusing
cloud of chemicals which will be felt by other particles, see
Fig. 23. Accordingly other active particles will be reoriented
towards or against246,247 the active particle via diffusio-phoretic
motion (on top of their self-driving motion). Indeed the surface
creation or consumption of solutes generates long-distance
distortion of the solute concentration profile, typically relaxing
spatially as a monopole dcs B 1/r (the scaling deriving from
Fick’s equation with a sink). This long-range interaction is for
example highlighted in Fig. 23b, showing the diffusio-phoretic
attractive motion induced by a single beacon, from ref. 231. At

shorter range, the interaction may become more complex and
requires detailed investigation of the chemical drivings.247

This osmotic-induced chemical interaction is at the origin of
many advanced collective properties of active particles, such as
clustering,224,230,232,248 or self-assembly,231,235 see Fig. 23c and
d. Out-of-equilibrium self-assembly has raised enormous inter-
est, since activity leads to unexpected structures, with the hope
of designing novel and smart materials.224

It is interesting to formalize the basics of the phenomenon
at stake by writing the coupled diffusion-reaction equation
for the colloid population and solute concentration. For the
purpose of illustration, we only consider here a single neutral
chemically generated specie which acts as a chemo-attractant to
the colloids. These dynamical equations actually identify with
the so-called Keller–Segel equation, which were written to
describe the chemotactic aggregation of a slime mold (amoebae)
under the perspective of a dynamical instability:230,249,250

@tr ¼ �=: �Deff=rþ ðmDP=cs � rÞð Þ

@tcs ¼ Ds=
2cs þ ar ’ 0

(100)

with Deff the effective diffusion coefficient of the active colloids,
Ds the diffusion coefficient of the ‘‘chemo-attractant’’ specie and
a the chemical rate of the powering chemical reaction occurring
at the surface of each colloid; we assume here that the solute
dynamics are fast. By analogy to electrostatics, the second equation
for the solute allows one to obtain the solute concentration as a
function of the colloid density, as csðrÞ ’ a=Ds

Ð
dr0rðr0Þ=4pjr� r0j.

Fig. 23 Out-of-equilibrium self-assembly. (a) Sketch of the diffusing
chemical trace left behind active particles, and which modifies the local
chemical gradient. Another active particle approaching this chemical
gradient will therefore sense a different driving velocity along its edge,
changing its trajectory (here in an attractive configuration). (b) Courtesy
from Jeremie Palacci, data from ref. 231. Passive colloid diffusio-phoretic
speed as a function of the distance to a hematite cube that can be used -
with blue light - to catalyse the dissociation of H2O2. (c) Spontaneous self-
assembly of active particles. The particles form various cluster sizes and
shapes. The scale bar is 10 mm. Reproduced from ref. 230 with permission
from the APS, copyright 2012. (d) Sequential self-assembly of DNA-grafted
droplets, the different colors represent different functionalizations. The
scale bar is 10 mm. Reproduced from ref. 252, image under Creative
Commons Attribution 4.0 International License. (e) Targeted assembly of
phototactic swimmers into nanogears. The scale bar is 1 mm. Reproduced
from ref. 235 with permission from Springer Nature, copyright 2018.
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When introduced in the first equation in eqn (100), this shows
that the diffusio-phoretic attraction acts as a self-consistent
effective potential such that

Ueffðr; frgÞ ¼ �
mDP

m0

a
Ds

ð
dr0

rðr0Þ
4pjr� r0j: (101)

with m0 the bare colloid mobility. Equivalently, the dynamics of
the colloid population can be formally derived from an effective
free energy functional of the colloid system which takes the
simple form

Feff ¼ kBTeff

ð
dr rðrÞ logrðrÞ � rðrÞ½ �

� 1

2

mDP

m0

a
Ds

	 
ð
dr0dr00

rðr0Þrðr00Þ
4p r0 � r00j j

(102)

This highlights that the ‘‘osmotic interaction’’ via the
diffusio-phoretic motion induced by the solute traces leads to
long range non-equilibrium interactions. This is expected to
lead to strong collective effects, such as the clusterization
observed experimentally. For attractive systems, mDP 4 0, these
equations are formally analogous to a (non-inertial) gravita-
tional system. Keller–Segel and subsequent works have shown
that the above equations predicts an aggregation mechanism,
similar to a Chandrasekhar gravitational collapse.249,250 Similar
conclusions were predicted for thermally active colloids251

where the threshold for collapse was rederived.
However the clusters observed in the experiments, e.g. in

ref. 230, 231 and 248, do not correspond to full collapse and are
rather dynamic, with clusters reaching a finite size and con-
tinuously rearranging over time, see Fig. 23c. As shown in
ref. 253 and 254, this behavior can be reproduced by Keller–
Segel-like dynamics provided both translational and rotational
phoretic conditions are properly taken into account in the
kinetics. Using this framework, it is furthermore possible to
predict the condition in which dynamic clusterization
occurs,253,254 in good agreement with the experiments.

Beyond clusterization, the self-diffusio-phoretic motion of
particles and their osmotic interactions were shown lately to
lead to the self-assembly of active particles into higher levels of
structure organization. This is highlighted in Fig. 23e, from
ref. 235, where self-spinning microgears are built on the basis
of these non-equilibrium interactions. Beyond, more ‘‘on
demand’’ structures are possible, like structures assembled
through DNA-grafted interfaces252,255,256 (see Fig. 23d).

6 Osmosis, towards applications

From food processing in biological organisms,257–259 to reverse
osmosis for desalination and energy generation from salinity
differences,31,73,260,261 osmotic forces are harvested in a con-
siderable number of applications in very different domains. In
this section we review more specifically a variety of such
applications based on (recently) elucidated transport mechan-
isms relying on osmotic forces.

6.1 Water treatment and membrane separation

6.1.1 Reverse and forward osmosis and their limitations.
Access to clean water and cleaning water from industrial waste
is a great challenge:262 in 2015 still 663 million people world-
wide lacked access to drinkable water,263 and cleaning waste
water is becoming a major challenge in oil and gas indus-
tries;264,265 going further, some new regulations may appear to
enforce a zero liquid discharge for industrial waste, thus
requiring complete recycling of water resources.266 On a day-
to-day basis, humanity consumes the equivalent of 10–100
cubic kilometers of fresh water267 for all purposes (agriculture,
industry, domestic). Because fresh water is not directly accessible
everywhere, and in order to cover the growing need for fresh-
water, desalination of sea water and cleaning of waste water have
become essential.

Lately, membrane based technology has established itself
for water purification. Reverse osmosis is the most broadly used
technique (representing 62–65% of the installed capacity in 2015
for desalination,268,269 24% being thermal based technologies).
Reverse osmosis relies on the very simple principle of applying
an external large hydrostatic pressure to counterbalance the
osmotic pressure difference and induce a flow of water towards
the low concentration side – see Fig. 24a. In particular, one can
therefore extract water from seawater by concentrating seawater
even more, or extract water from waste water (in a simplistic
view). For desalination the pressures involved are typically of
30–50 bars in order to exceed the osmotic pressure.

In a different approach, forward osmosis (combined with
thermal methods for desalination) makes use of draw solutions
to counterbalance the salinity induced osmotic pressure270–272

– see Fig. 24b. Generating a high osmotic pressure, typically
above the 30 bars of pressure between sea and fresh water,
requires draw solutes which are highly soluble in water, and
also with a sufficiently small size (hence low molecular weight).
Indeed, as a rule of thumb, for a solute with elementary volume
v0 B r3 with r the solute size, the maximum osmotic pressure

which can be achieved is typically DP � kBT

v0
. This would

suggest that solutes with size above 1 nm are not able to
achieve a sufficiently high osmotic pressure for desalination

Fig. 24 Reverse osmosis and forward osmosis. (a) Schematic explaining
reverse osmosis, occurring via a piston applying a large hydrostatic
pressure p such that the difference to the atmospheric pressure (pressure
of the other compartment) is larger than the osmotic pressure p–p0 Z DP.
(b) Schematic explaining forward osmosis, occurring via the addition of
some soluble species (here the purple solute) that increases the osmotic
pressure on the drought side and therefore ‘‘attracts’’ water from the brine
side.
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(note that this argument forgets departures from ideality,
which could increase more strongly the osmotic pressure). In
a more subtle way, a solute with a strong affinity towards water
may also decrease the water chemical potential and modify
accordingly the pressure. This echoes the huge pressure drops
measured with hydrogel structures.273

A number of other membrane based techniques with similar
geometry are used or being developed, from electrodialysis
(based on electric potential driving of salts)274,275 to capacitive
deionization379–381 but also shock electrodialysis based on the
idea of combining salt recovery with a porous charged
material,276 concentration polarization,277 and other techniques
harnessing chemical phenomena like adsorption desalination278

or biodesalination279,280 and bio-water treatment.281

Membrane-based technologies suffer from a number of
limitations. First, they have a high-propensity to fouling by
molecules which are larger than the critical molecule size
allowed to pass;282 also due to the large pressures applied
during reverse osmosis. Second, because they are passive
membranes – essentially discriminating particles upon their
size – they can not be at the same time very selective and highly
permeable. This was formalized for ultrafiltration membranes
in ref. 283 and 284. In fact increasing the permeability of a
membrane (and therefore the energy required to recover a given
amount of cleaned water) requires essentially to broaden the
size of the pores, as water flow within pores is limited by
friction on the pore walls. However this leads inevitably to a
decrease in the selectivity or separation properties of the
membrane; and reciprocally. This is called the selectivity-
permeability trade-off. For nanofiltration membranes (used
for reverse osmosis and so on) the same trade-off exists
although the proper establishment of a limiting regime is still
empirical261 – see Fig. 25. Finally, one challenging progress
route for membrane separation is the ability to perform mole-
cular scale design285 and therefore to ensure the best selectivity
properties to eliminate e.g. micropollutants, some of which are

of great concern for health.286 Overall, it should be realized that
the main current challenge in desalination and water purifica-
tion is not really the permeability of the membrane, but rather
achieving a well-controlled selectivity to retain/reject specific
species.

6.1.2 What can we expect from new nanomaterials and
nanofluidic devices? It may appear that developing the ‘‘ideal
membrane’’, which is both highly selective and highly permeable,
is like squaring the circle. However, Nature has achieved this tour-
de-force, with water porins like aquaporins exhibiting unrivalled
performances in terms of selectivity and permeability.289 This
requires to develop new artificial materials with properly decorated
nanopores allowing for such exquisite design, for example self-
assembled artificial water channels,289–291 or tailor-made DNA
origami channels.86,150 This is actually a challenge that nanoscale
science may be up to.88,152,289,292

The development of new nanomaterials has indeed allowed
the emergence of new avenues for membrane separation.
Graphitic materials of various forms and geometries, such as
carbon nanotubes, graphene and lately graphene oxides mem-
branes, have raised considerable promises, see ref. 88 and 152
for reviews on this topic. Carbon materials were consistently
shown to exhibit ultra-low water friction and high permeability,
and this represents a key asset to minimize the viscous loss in
separation processes. Furthermore advanced functionalization
allows one to decorate the nanotubes improving selectivity.72,293,294

Membranes made of nanopores in e.g. 2D graphene sheets have a
molecular thickness, while keeping high mechanical strength: this
accordingly increases the driving forces for transport (which scale
like the inverse thickness) by orders of magnitude, hence all
transport coefficients and the overall efficiency of the process.88

Still, these graphitic systems – carbon nanotubes, graphene
slits and more generally 2D materials – remain difficult to
fabricate as large-scale membranes. Upscaling towards indus-
trial applications is a considerable challenge. The advent of
graphene oxide membranes and their derivatives may change
the story. These are constituted of graphene flakes, which
organize into parallel stacks of graphene layers, having nano-
slits in a staggered alignment and an interlayer distance which
is typically below the nanometer. In spite of the complex
labyrinthine flow across multiple graphene layers,295 the mem-
branes demonstrate large permeability.296,297 Last but not least,
they are relatively easy to fabricate at large scale. Such systems
therefore appear as ideal membranes for ionic separation298

and may well revolutionize the domain of filtration.
Now, beyond materials themselves, it should be realized that

nanoscales allow for many new ‘‘exotic’’ transport phenomena,
the consequences of which have – up to now – been barely
harnessed. One may quote for example the membranes made
of hydrophobic nanopores, making use of nanobubbles as a
semipermeable sieve for osmotic phenomena;149 or the ionic
and osmotic diodes, allowing for rectified transport in mem-
branes, or the active osmotic phenomenon, as we discussed
above; or in a different context, the specific adsorption proper-
ties of graphene oxide membranes allowing for water-ethanol
separation in membranes,299 which are far more efficient than

Fig. 25 Selectivity permeability trade-off. (a) Adapted from ref. 283.
Selectivity versus permeability values for ultrafiltration membranes (used
for separation of larger molecules than salt ions). Bovine serum albumine
is the model molecule for selectivity. The line indicates the standard
selectivity permeability model (with a log normal distribution of pores,
Poiseuille flow and selectivity given by Zeman and Wales exclusion rules287).
(b) Adapted from ref. 261 with permission from Springer Nature, copyright
2016. Selectivity versus permeability values for reverse osmosis membranes
using salt as the model specie for selectivity. The lines correspond to the
empirical models inspired from ref. 288 to relate maximal selectivity and
permeability in reverse osmosis membranes.
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standard distillation. Such routes would deserve a proper
exploration to go beyond the relatively basic sieving principles
underlying membrane science. These should offer alternative
routes for filtration and separation which still need to be
invented.

6.2 Osmosis in biological systems: aquaporins, ion pumps
and the kidney

Osmotic forces are harvested in the biological world in a consider-
able variety of phenomena and contexts: to store energy, induce
mechanical motion, control ejection and absorption of compounds,
etc. Osmotic pressure was much studied at first in plants,5 and one
may in fact assess that plant life depends on osmotic forces. Indeed
plants can not rely on muscle for force generation, yet they are able
to achieve tensile and compressive stresses on a much wider
range.300 To produce motion or growth, they rely on an underlying
hydraulic machinery driven by osmotic or humidity gradients. For
example, phloem§ flow harnesses osmotic driving to transport sugar
over long distances.258,259,301–303 Osmotic transport is critical to
regulate size in e.g. conifer leaf.304 The opening and closing of
stomata on leaves¶ 305 and the circadian motion of various
plants and flowers306,307 is regulated by swelling or shrinking
driven by water flows. Those flows are generally actuated by
active transport of solutes through specialized pumps.308,309

Even biofilms harvest osmotic pressure gradients in the extra-
cellular space for surface motility.310

In animals and human beings, a number of processes involve
osmotic flows for water or volume regulation and transport: from
the kidney311 to the liver312 and the intestine,313 not forgetting
salivary secretion.314 Cells harvest osmotic forces in a variety of
ways, most obviously to control expansion and regulate size, e.g.
in cysts,315 and also to regulate absorption316 or ejection of
genetic material317 via small capsules. A number of processes
also harvest more subtle forces in a fascinating way and we cite a
few to engage the curious reader. Osmotic pressure changes may
affect frequency of miniature end-plate potentials in neuromus-
cular junctions,318,319 but also drive oscillatory flows for cell
regeneration.320 Electro-osmosis is harvested for uphill transport
of water by insects in draught areas321 but also more generally
for epithelial transport.322,323

The list of examples of osmotic transport in biological
systems is nearly infinite, and occurs at all possible scales from
individual molecules to organs and tissues. It is pointless to
attempt a thorough review. Rather, we discuss below in more
detail three specific biological phenomena related to osmosis.
These examples raise in particular the question of whether such
phenomena may be mimicked artificially to achieve advanced
osmotic transport in artificial devices.

6.2.1 Aquaporins: the ideal semi-permeable membrane. A
decisive turnpoint in the study of nanoscale systems was
triggered notably by the discovery of nanoscale channels in
biology. One of the most famous of these channel families is

the aquaporin family (the most common being AQP1 or
CHIP-28, see Fig. 26a).324,325 An aquaporin is a water-specific
channel; aquaporins are present in many organs in living
systems, animals, but also plants:326 they play a central role
in the human kidney (see below), are also key role players in red
blood cells and many other organs,327 and regulate water
uptake in plants.328 The striking specificity of aquaporins is
that they are both highly selective to water and highly perme-
able. The permeability of an aquaporin was measured notably
by P. Agre et al. to be in the range of pf = 11.7 � 1014 cm3 s�1 at
37 1C8 329,330 (with pf here defined as Q = pfvwDp/kBT; Q is the
water flux and vw the bulk water molecular volume). This
corresponds to E3 million water molecules translocating
per second per bar (pf being related to the particle flux dN/dt
according to dN/dt = (pf/kBT)Dp). The value of the permeability
of the aquaporin is much larger than that for other channels,
see ref. 289 for a comparison, or what would predicted by
continuum dynamics at these scales.62,332

Aquaporins present several intriguing features: surprisingly
they are hydrophobic channels335 and they are extremely
constricted335 – only 3 Å in diameter at the narrowest point
that allows for this selectivity. An aquaporin-based membrane
constitutes therefore a somewhat ideal semipermeable
membrane. All of its exceptional transport properties are inti-
mately connected to its nanoscale (and even

:
Angström-scale)

structure – thus hinting to the striking and appealing proper-
ties of fluid flow at the nanoscale. It is thus natural to look for
artificial solutions for semi-permeable membranes harvesting
properly designed nanoscale structures.290,291 For example,
aquaporins present a sophisticated hourglass shape, that is
believed to enhance the water permeability,336 see Fig. 26b.
Such a geometry could be readily mimicked using e.g. pore
coatings337 to enhance permeability of membranes.

6.2.2 Kidney: an ultra-efficient and unconventional osmo-
tic exchanger. As a second example, we discuss the separation

Fig. 26 The aquaporin AQP1 water channel. (a) Molecular dynamics
simulation of water transversing an aquaporin channel. Snapshot from
movie in ref. 333 under Creative Commons license, in complement to
ref. 334. (b) Effective pore diameter of the AQP1 and GlpF channels. Pore
diameters were determined with AMBER-based van der Waals radii and
analysed using the program HOLE38. Reproduced and adapted from
ref. 335 with permission from Springer Nature, copyright 2001.

§ Phloem is a living tissue that transports soluble compounds in particular sugar
in plants.
¶ Stomata are small pores at the leaves surface that control leaf transpiration.

8 A more recent measurement in ref. 331 suggests that this value may actually
have been underestimated by a factor 5.
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process occurring in the kidneys. As we highlight, the efficiency
of the kidney filtration process takes its root in a very uncon-
ventional osmotic process, and could be inspirational for future
separation technologies.

Per day, the human kidney is capable of recycling about
200 L of water and 1.5 kg of salt, separating urea from water
and salt at the low cost of 0.5 kJ L�1 338 while readsorbing
C99% of the water input. The core of the kidney separation
process lies in the millions of parallel filtration substructures
called nephrons.338 A striking feature is that the nephrons of all
mammals present a precise loop geometry, the so-called Loop
of Henle – in the shape of the letter ‘‘U’’ – see Fig. 27a. This loop
plays a key role in the urinary concentrating mechanism and
has been extensively studied from a biological and physiologi-
cal point of view.338–342

As put forward in ref. 311, the U loop acts as an osmotic
exchanger, similar in concept to a thermal exchanger – see
Fig. 27a. A mixture of water, salt and urea (or any other
compound to be separated) enters and flows through the
tubular U loop. Water and ions may be exchanged through
the tube walls with a common interconnecting media, called
the interstitium. On the descending side (D), aquaporins allow
for water permeation across the walls. On the ascending side
(A), salt is actively pumped, using an external source of energy
(in the case of the kidneys, the dissociation energy of Adenosine
Tri-Phosphate, ATP). This pumped salt results in an increased
salt concentration in the interstitium, higher than the concen-
tration of salt and urea in the descending tube (D). The osmotic
pressure is therefore inverted and drives water from the U tube
to the interstitium across the aquaporin channels. As a result,
urea is highly concentrated in the U loop, while salt and water

are redirected from the interstitium towards the blood circula-
tory network. This U-shape geometrical design is key to the
efficient operation of the separation. Note that the third limb
following the U-tube plays a crucial role in enhancing the
separation efficiency.311

One may actually estimate the working efficiency of this
osmotic exchanger in a simple way, providing a lower bound on
the separation ratio. It is quantified in terms of the amount of
lost water Z = cA,top

w vA,top/cD,top
w vD,top, where v is the flow velocity

calculated at the top of the ascending (A) or descending (D)
branch, and cw is the concentration of water. For the system to
work, water has to flow from the descending branch towards
the interstitium and this requires that chemical activities obey
aWater

D,top Z aWater
I,top . The latter can be expressed simply (in the low

concentration regime) in terms of molar fractions and one
obtains

cD;topw

c
D;top
w þ c

D;top
s þ c

D;top
waste

� cI;topw

c
I;top
w þ c

I;top
s

(103)

where cw, cs and cwaste are respectively the concentrations of
water, osmotic activator (salt) and waste. Assuming that all the
osmotic activator has been reabsorbed in the upper branch

yields cI;tops ¼ vD;top

vI;top
cD;tops . Water flow is conserved and thus

cD,top
w vD,top = cI,top

w vI,top + cA,top
w vA,top. A lower bound for the

fraction of lost water Zlost can then be simply deduced from
eqn (103) as

Zlost �
cD;topwaste

c
D;top
s þ c

D;top
waste

!n

: (104)

with n = 1. For the geometry including a third reabsorbing
branch, the collecting duct, see Fig. 27a, a similar reasoning
yields the same result with n = 2. The square exponent thus
leads to much smaller lost water fraction Zlost showing that this
third branch is essential in the overall efficiency of the kidney
separation. Using physiological values for the concentration,
this estimate provides a prediction for water reabsorption, and
thus urea separation, in the range of Zlost B 1%, which is in
excellent agreement with every-day life experience; see ref. 311.
To some extent, note that the osmotic exchanger of the kidney
may be compared to a forward osmosis process. However the
key difference is the geometry with 3 limbs that allows for a
more efficient reabsorption of water.

In fact, energy wise, this system is also shown to be far more
efficient than standard reverse osmosis principles, as can be
estimated within the above model, see Fig. 27b. In living
systems, the nephron operates the separation of urea from
water near the thermodynamic limit, C0.2 kJ L�1.311 Yet,
standard dialytic filtration systems, which are based on reverse
osmosis and passive equilibration with a dialysate, require
more than two orders of magnitude more energy.343

Some attempts to build artificial devices mimicking the
nephron were reported in the literature, but they rely on biolo-
gical tissues or cell mediated transport, and cannot be easily
scaled up and transferred to other separation devices.344–346

Fig. 27 The osmotic exchanger principle of the kidney. (a) Inspired from
ref. 311. Water, salt and urea molar fractions are represented in various
colors along the U tube (descending, D and ascending A) limbs and the
interstitium (I). For visibility, the water molar fraction was divided by 100.
Black arrows represent the direction of flow. A semi-permeable
membrane (containing aquaporins) separates the descending limb and
the interstitium, while the ascending limb contains salt pumps transporting
actively the salt to the interstitium. A third limb, the collecting duct (CD, in
lighter collers) also exchanges with the interstitium via a semipermeable
membrane. The latter is crucial for the overall efficiency of the separation
process. (b) Adapted from ref. 311. Power required for the functioning of
the separation process as a function of the targeted water loss ratio: for the
simple loop geometry (A + D), for the full serpentine (A + D + CD), as
compared to the equivalent reverse osmosis process under a pressure
gradient (RO). (a) and (b) are under Creative Commons Attribution 3.0
License.
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None of the approaches so far rely on the specific geometry of
the U-loop to improve the filtration process. Mimicking the
separation process occurring in the kidney based on the physical
perspective described above can now be foreseen using micro-
fluidic elementary building blocks.

6.2.3 Proton pumps, chemi-osmosis and advanced ionic
machinery. As a last example, we discuss proton pumps and
channels, which are compelling illustrations of how Nature
harvests osmotic forces to drive mechanical parts. Biological
systems have developed a fascinating artillery of devices to
passively and actively transport ions, namely ionic channels
and ion pumps. Among these, proton pumps are canonical
examples. We detail a few examples below.

Proton pumps to build proton gradients. There exists a great
variety of ways to actively transport protons in biology, from
combined proton-electron transfer in cytochrome oxidase (cru-
cial for respiration347) to proton pumps implying the participa-
tion of ATP – the latter are called H+-ATPases.348 ATP-ases play a
key role in bio-energetics and are ubiquitous in many forms of
life and plants.349 They include three types. The P-type ATP-ases
include in particular the plasma membrane H+-ATPase, that
uses the dissociation energy of ATP to form gradients of
protons. These gradients are crucial for plant movement (from
phloem loading, to size regulation in the stomatal aperture, to
tip growing systems** 350). The V-type ATP-ases also use the
dissociation energy of ATP to form gradients of protons. Inter-
estingly this chemical reaction is accompanied by a rotary
motion of the protein. It is central to many processes in
animals,351 from acid base balance in the kidney, pH main-
tenance in mechanosensory hair cells, bone resorption, tumour
metastasis, sperm motility and maturation etc. The last type,
the F-type, can work similarly to the V-type352,353 and consumes
ATP to form gradients of protons depending on aerobic
conditions.354 However it most commonly works the reverse
way, e.g. consuming the proton gradient and synthesizing ATP,
and we discuss that below.

Proton gradients harvested for energy vectorization and locomotion.
The idea that osmotic gradients could be harvested for advanced
functionalities was introduced as early as in the 1960s, by the
seminal work of Mitchell in ref. 355. He introduced the concept of
chemi-osmotic coupling, namely that a chemical reaction may be
powered by the directed channeling of a specie. In the case of the F-
type ATP-ase, directed motion of protons (note that the full reaction
does imply the production of water on one side of the membrane)
catalyzes the synthesis of ATP through a rotary motion353 – see
Fig. 28a. As the F-type catalyzes the formation of ATP (that is the
vector for energy in all living systems), it is central to all forms of
life.356 The rotary motion occurring during synthesis can be
harvested for artificial locomotion of inorganic devices.357 Harvest-
ing proton gradients for locomotion is more commonly performed
not by the F-type ATP-ase but by the bacterial flagellar motor358 –
see Fig. 28b. The bacterial flagellar motor is an impressive 45 nm358

ionic machinery at the root of bacterial locomotion via flagellar
rotation notably in E. coli.359 A proton gradient induces sponta-
neous transport of protons through stator parts (MotA/MotB).360 As
the transport is gated through these channels, it induces a ratchet-
like motion of the rotor part of the motor.361 The flagellum is
attached to the rotor and therefore rotates. Around 1200 ions
translocating per rotation generate a force at the base of the
flagellar motor of about 200 pN.358 The flagellum rotates at about
100 Hz358 allowing E. coli to swim at more than 10 body lengths
per second!

Nanoscale ionic machinery. The proper function of the F-type
enzyme is dependent on a subtle balance of osmotic and
chemical potentials for proper function362 and the detailed
mechanisms involving motion and electric field coupling to
the proton flux are still investigated.363 Further physical insight
on the detailed flows in the proton pump but more broadly on
ionic channels is required to establish biomimetic principles to
construct similar ionic machines with artificial material. Such
physical insight is also dependent on better modeling of ion
transport at the ultimate scales, with strong charge inter-
actions, breakdown of hydrodynamics, etc.

6.3 Blue energy harvesting: osmotic power and capacitive
mixing

As we have seen, filtration and separation of molecules requires
energy input to counteract the entropy of mixing. Reversely,
entropic energy harvesting may be possible by mixing mole-
cules. The energy harvested from differences in salinity, e.g. by
mixing sea water and fresh river water, is called blue energy.
The maximal entropic energy collected by mixing volumes of
sea and river water is typically 0.8 kW h m�3, see ref. 364. Over
the earth, counting the natural potential resources where rivers

Fig. 28 Harvesting proton gradients: energy vectorization and locomo-
tion. (a) Simplistic view of an F-type H+-ATPase, here working as an ATP
synthesis enzyme. A proton gradient is maintained between the inter-
membrane space and the cytoplasm by the respiratory cycle. Protons thus
naturally flow inwards through the proton channel of the ATPase (in
yellow). This triggers a mechanical rotation of the central element of the
ATPase that in turn catalyzes the synthesis of ATP from adenosine dipho-
sphate (ADP) and phosphate (P). (b) Simplistic view of the bacterial flagellar
motor (in blue). The proton gradient transverses here the stator parts of the
motor (in yellow), namely the MotA/MotB complexes. These are respon-
sible for turning the basal rotor of the flagellar motor. As the flagellum is
attached to the motor, this induces rotation of the flagellum and allows for
bacterial locomotion.

** Tip-growing systems, such as pollen tubes or root hairs, continuously grow in
one direction.
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flow in the ocean such as the Amazonian river, a total of around
1 TW of power could be harvested, amounting to 8500 TW h in a
year.260 This is to be compared with the actual production of other
renewable energies: in 2015, hydraulic energy production is
B4000 TW h, the nuclear energy around 2600 TW h, and wind
and solar 1100 TW h altogether.365 In the global energy balance,
blue energy, as a renewable and non-intermittent source of energy,
has thus a great potential. Here we focus on some energetic and
osmotic aspects of blue energy and refer to ref. 75 for a more
detailed review of the current status of blue energy harvesting.

The current attempts to harvest blue energy have essentially
relied on two techniques, as sketched in Fig. 29. Pressure-
retarded osmosis (PRO) harvests the natural osmotic force
between sea water and river water when they are separated by
a semipermeable membrane to activate a turbine to generate
electricity. Reverse electro-dialysis (RED) uses diffusion gradi-
ents of salts between sea water and river water to directly
generate (ionic) electric currents by separating the corres-
ponding ion fluxes using a multi-stack of cation and anion
selective membranes.366 Both strategies rely on separation of
water from ions or ions from water, and therefore require
subnanoporous structures which impede the water fluxes and
diminish energetic efficiency. Current PRO technologies are only
able to produce up to 3 W m�2, less than the critical 5 W m�2 for
economic viability.367 The reasons for such a low performance
can be readily understood: while the osmotic pressure at the
interface between sea water and fresh water is considerable and
reaches 30 bars, the permeability of the semi-permeable
membrane is extremely small since its pore structure is in the
sub-nanometer scale to sieve ions: the power, which is the
product of flow rate and pressure drop is accordingly small.

On the other hand, state-of-the-art RED achieved up to
8 W m�2 in controlled environment,82 and there is an industrial
hope for blue energy harvesting which is currently explored
with the REDStack project in the Netherlands.75,366

Still we note that the above power figures should not be
considered as negligible, because membrane systems are quite
compact and hundreds of square meters of membranes can be
packed over a single ground square meter. Such performances
should be compared to the 2.5 W per square meter of ground
field required for a Windmill farm,368 due to the very large
required distance between windmills to prevent flow inter-
actions. This illustrates that blue energy is actually already
competitive as such in spite of the poor performances of PRO
and RED.

Beyond PRO and RED, it was shown recently that new
nanomaterials and nanofluidic transport constitute key assets
that allow to boost considerably these performances.73–75,87,369

Experiments across nanotubes of boron-nitride (BN), and sub-
sequently across MoS2 nanoporous membranes, reported huge
ionic currents. A puzzling remark is that the BN nanotubes in
the experiments of ref. 73 or the MoS2 nanopores of ref. 74 are
permeable to ions, in contrast to the canonical views of RED
involving cation and anion selective membranes. The origin of
the osmotic current was then shown to be the diffusio-osmotic
ionic currents taking place at the surface of the materials,
coupled to the considerable surface charge exhibited by these
systems – see Fig. 30. We reported in the previous section the
corresponding ionic current in eqn (55) and (56), and for a
membrane constituted of N tubes of radius R, length L and
surface charge S, the ionic current can be estimated as

Iosm � N2pRS� vDO � N
2pR
L

SDDO � D log cs (105)

where vDO the diffusio-osmotic water flow speed and DDO is the
diffusio-osmotic mobility, typically DDO B kBT/(8pZcB). This
prediction was fully confirmed experimentally in ref. 73.

Fig. 29 Collecting blue energy. (a) Pressure retarded osmosis (PRO). The
mixing of sea water and fresh water across a semi-permeable membrane
drives a water flow that turns a turbine generating energy. (b) Reverse
electro-dialysis (RED). Fresh and sea water are separated by stacks of
alternating cation and anion selective membranes. Spontaneous diffusion
induces fluxes of ions through the selective membranes, which is captured
at the boundaries by reactive electrodes producing an electric current.
Usually RED is performed by alternating fresh and sea water a dozen times,
although only three layers are represented on the figure.

Fig. 30 Blue energy with diffusio-osmosis. A porous membrane with
large and charged pores (zoom) induces a diffusio-osmotic plug-like flow
with center velocity vN upon a salt concentration difference ((e.g. here
between sea and fresh water) as seen in Fig. 9). This flow drives excess
charges in the electric double layer producing a net ionic current Iosm that
can be harvested in a load resistance RL – top right electric schematic.

Chem Soc Rev Review Article

Pu
bl

is
he

d 
on

 2
2 

M
ay

 2
01

9.
 D

ow
nl

oa
de

d 
by

 S
yd

da
ns

k 
U

ni
ve

rs
ite

ts
bi

bl
io

te
k 

on
 5

/2
2/

20
19

 1
0:

25
:0

1 
A

M
. 

View Article Online

https://doi.org/10.1039/c8cs00420j


Chem. Soc. Rev. This journal is©The Royal Society of Chemistry 2019

Therefore – and this is a key asset – the blue energy does not
require full selectivity of the membrane, in contrast to RED
standards. Connecting the membrane to a load resistance RL –
Fig. 30, the maximum osmotic power which can be harvested is
easily found to be

P ¼ 1

4
RporeIosm

2 (106)

where Rpore is the pore or membrane resistance (that can be
obtained from standard conductance measurements). Osmotic
power reaches thousands of Watts per square meter in BN
nanotubes, and even up to 106 W m�2 for the 2D MoS2 due to its
molecular thickness (leading to huge gradients). This estimate
actually suggests to couple diffusio-osmotic current generation
with an asymmetric pore geometry leading to ionic diode
behavior:75 blocking the ionic backflow thanks to the diode
property allows one to boost the output power by reducing Joule
losses (see details in ref. 75 and Fig. 30). Asymmetric channels
were indeed shown to improve energy harvesting.370,371

This methodology can be readily generalized to other mate-
rials which are better suited for upscaling as compared to BN
nanotubes. Key progress has been made recently in this
direction.75 Using diffusio-osmotic currents thus constitutes a
promising route for improved blue energy harvesting, making it
possibly relevant to industrial scale.

Beyond these membrane-based routes, the so-called ‘‘capa-
citive mixing’’ methodology is an alternative approach to
harvest osmotic energy.372 The principle is to charge and
discharge an ionic capacitor by alternating flows of salty and
fresh water. Capacitor plates are connected to current collec-
tors. First (step A on Fig. 31a) salty water is flushed in, charging
the capacitor plates, resulting in a closed circuit current in the
load resistance. Then (step B), salty water is replaced by fresh
water. When the circuit is closed again on the load resistance
(step C), the capacitor plates discharge into the bulk as fresh
water is less salty, resulting in a current in the opposite
direction. The circuit is opened and fresh water is replaced by
salty water (step D) and the cycle may start again.

The power generated may be computed from the area of the
cycle in the voltage/charge plane – see Fig. 31b. Typically, over
1 cycle (about 20 h373), 1 J per gram of carbon electrode may be
collected. To compare with previous results, we estimate that
1 carbon plate of 6 � 6 cm2 is about 1 g, such that one may recover
around 0.2 W m�2 with capacitive mixing. Capacitive mixing there-
fore requires significant progress in optimizing the cell setup and the
nanoporous structure to enhance performances.374,375

6.4 Dead-end pores: detergency, particle and liquid osmotic
extraction

We have demonstrated in the previous sections how efficient
diffusio-phoresis is to boost migration of particles. Combined
with the ability to generate gradients of solute (in particular of
salts) at small scales, it proves a method of choice in various
applications to extract particles or liquids from dead-end pores.
We discuss shortly two examples where diffusio-osmotic forces
are harnessed.

A nice application of diffusio-osmosis was highlighted
recently in the context of cleaning and the significance of
rinsing in laundry detergency.376 The question at stake here
is how to extract particles which are stuck in dead-end pores in
the porous matrix constituting the fabric. A simple flow result-
ing from mechanical action may not be able to perform this
task, especially since particles buried in small pores in the
interyarn pore space may not be recovered by advection because
flow is channelled by larger pores (see Fig. 32a and c). Experi-
ments then showed that rinsing with fresh water generates

Fig. 31 Capacitive Mixing to collect blue energy. (a) Capacitive mixing
cycle. Two electrodes with functionalized surfaces (such that one is
positively charged in surface (green) and the other negatively charged in
surface (orange)) are embedded in a fluidic device where salty water and
fresh water are alternatively flushed in a cycle. (b) Associated voltage
versus charge cycle. The cycle is described further in the text.

Fig. 32 Particle removal with diffusio-phoresis. Reproduced from ref. 376
with permission from the APS, copyright 2018. (a) Fluorescence image
sequence showing particles in a dead-end microfluidic pore, upon advec-
tion in the main conduct. The solutions are composed of SDS at 10 mM. (b)
Same as (a) with a solute gradient, where the inner pore solute concen-
tration is 10 mM and the outer (main channel) is 0.1 mM. All scale bars are
50 mm. (c and d) A piece of cotton fabric is stained with colored colloidal
particles (polystyrene latex). The piece of fabric is washed and rinsed in
water (c) or washed in 10 mM SDS and rinsed with water (d) then
photographed immediately after rinsing (left) and 120 s afterwards (right).
All scale bars are 1 cm.
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surfactant gradients at the scale of the fabric fibres and this in
turn leads to diffusio-phoretic motion of the particles inside the
dead-end pores. This flushing geometry echoes the osmotic
shock discussed above. As highlighted in Fig. 32b and d, the
gradient-induced motion allows one to extract particles from
the intertwined network of pores. This suggests that, after
laundering with any kind of detergent, rinsing with fresh water
will allow a diffusio-phoretic push to wash out dirt and stains. It
is worthwhile noting that detergency within this prospect also
benefits from the log-sensing and osmotic shock effect dis-
cussed in Section 5.2: particle removal by this mechanism is
effective on significantly long time scales, allowing for proper
removal of the particles.

This type of mechanism based on diffusio-phoretic migra-
tion is versatile and applies to any flushing geometry. Various
recent experiments considered extraction of particles – colloi-
dal particles and oil emulsions – from dead-end pores.209,210

Such results have also obvious applications in a different
context, in geology for example, where dissolution and recrys-
tallization at the mineral-fluid interface leads to ubiquituous
salt gradients at the root of diffusio-phoretic and -osmotic
transport.76,377 In fact, flushing by fresh water was shown to
enhance considerably oil recovery, a method coined as ‘‘Low
salinity enhanced oil recovery’’.378 While the very origin of this
phenomenon is still debated, it is quite clear that diffusio-
osmotic flows will play a key role in recovering biphasic
mixtures using salinity gradients. Consider oil in a porous
structure with typical pore radius a, as sketched in Fig. 33,
where oil is trapped in dead-end pores. After a flush with fresh
water, a diffusio-osmotic flow may be generated at the surface
of the porous material, with velocity vDO = �DDOr log cs.
Assuming first that oil is blocked, this generates a counter-
balancing pressure gradient, such that the total flux is vanish-
ing, leading to a pressure drop

DpDO ¼ �
8ZDDO

a2
D log cs½ � (107)

along the dead-end channel (and independent of the channel
length). Putting in numbers, with a strong salinity gradient
between salty water at 1 M and fresh water at 0.1 mM to fix

ideas, we find DpDO = 0.07 bar for a = 100 nm and up to DpDO =
30 bars for a = 5 nm. This has to be compared to the oil–

water capillary pressure expressed as DPcap ¼
g
a

with g C

10–20 mN m�1 a typical surface tension at the oil–water inter-
face (possibly decorated with injected surfactants). While
Dpcap = 2 bar 4 DpDO for a = 100 nm, it is in the same range
for a = 5 nm with Dpcap B DpDO B 40 bar. For very small pores,
the pressure induced by diffusio-osmosis – which scales as
1/a2 – is thus able to bypass the capillary pressure, scaling as
1/a. These simplistic estimates are made for illustration only
and would deserve more detailed experimental investigations.
They highlight the efficiency of diffusio-osmotic effects to
extract liquids which are deeply confined within nanometric
dead-end porosity.

7 Concluding remarks and
perspectives

As is clear from our discussion in the previous section, osmosis
is ubiquitous and crucial to an impressive number of processes,
with extremely diverse manifestations. In spite of this diversity,
a key and universal aspect of osmosis is that it may be
interpreted as a driving force, exerted by the membrane (or a
surface, or a particle’s surface, and so on) on the solute
particles. As we have seen in many situations in detail, we
typically expect the apparent osmotic pressure to write gener-
ically as

DPapp C hcs(�rUeff)i

with h�i some specific average and Ueff the effective interaction
potential. This mechanical perspective allows one to interpret
most osmotic related phenomena (diffusio-osmosis, diffusio-
phoresis, active osmosis, etc.). Beyond this generic description,
a proper description of the forces at play is required in more
specific examples, as we showed on the subtle example of the
force balance in diffusio-phoresis.

Our understanding of osmotic related phenomena is still
blurred by a number of open riddles. Non-equilibrium osmotic
flows should be investigated, in particular to harvest non-
equilibrium forces for advanced transport of species, which
offer a number of promising avenues. Introducing more reli-
able descriptions and understanding for ionic transport at the
smallest scales should also open the way to build advanced
ionic detectors and ionic-powered machinery. At micrometric
scales, a number of processes could be improved, harvesting
the properties of specific geometries – as in the kidney –
together with a clever mix of osmotic forces – as diffusio-
phoresis for detergency.

Overall we still have a lot to learn from Nature and how it
harvests osmosis in many forms, for separation purposes,
energy storage and harvesting, etc. Today osmosis is usually
harnessed in its most basic form, for example as the proto-
typical example of osmotic pressure across a semi-permeable
membrane. Yet Nature has developed far more clever and far

Fig. 33 Diffusio-osmotic effects for oil recovery under salinity gradients.
Enhanced oil recovery is traditionally preformed by injecting sea water in
the reservoir to push the oil. However flushing with fresh water slugs is
known to boost the process. Gradients of salinity within dead end pores
may help bypassing the capillary forces blocking the oil within the porosity.
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more complex examples. Mimicking the natural wonders with
artificial systems is a great challenge but it opens new avenues
for many outstanding societal questions that are worth the
journey.

8 List of symbols

We report below symbols that are used frequently throughout
the review.
a Pore radius
A Membrane or pore area
b Slip length of the surface
b = 1/kBT
cs Solute concentration
cw Water or solvent concentration
c+/� Concentration of positive or negative ions
DDO Diffusio-osmotic ‘‘diffusion’’ coefficient
DDP Diffusio-phoretic ‘‘diffusion’’ coefficient
D0 Colloid diffusion coefficient
Ds Diffusion coefficient of the solute
e Elementary charge
E Electric field
e Dielectric permittivity of the fluid
Z Solvent viscosity
IDO Diffusio-osmotic ion current
Ie Electric current
Je Exchange or Excess solute flow
Js Solute flow
js = Js/A solute flow per unit area
kB Boltzmann’s constant
Kosm Osmotic electric mobility
L Thickness of the membrane or length of the pore
khyd Permeance of the membrane or pore
cB = e2/4pekBT Bjerrum length
L Transport matrix (or a part of the full matrix)

LD ¼ DsA

ZL
, solute permeability of the membrane or pore

Lhyd ¼ khydA
ZL

, hydrodynamic permeability of the

membrane or pore
l Range of potential interactions

lD ¼ 1
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8p‘Bcs
p

Debye length

ls ¼ Ds

kBT
mobility of the solute

mDO Diffusio-osmotic mobility
mDP Diffusio-phoretic mobility
mEO Electro-osmotic mobility
m0

i Chemical potential of the pure specie i
mi Chemical potential of specie i
Ni Number of molecules of specie i
os Solute ‘‘mobility’’ across the membrane
p Pressure
P Osmotic pressure
Q Volume flow
R Particle size
re Charge density

s Reflection or selectivity coefficient
S Surface charge
T Temperature
U(x) Potential barrier representing the membrane
v Velocity field of the fluid
vDO Diffusio-osmotic velocity
vDP Diffusio-phoretic velocity
vEO Electro-osmotic velocity
vw Molar volume of water
Ve Electric potential
X Solute molar fraction
z Zeta potential
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I. WHAT IS DIFFUSIOPHORESIS

To understand diffusiophoresis we need to take a proper account of the effect of the boundaries on the

solvent and the solute (Anderson, 1989; Anderson et al., 1982; Anderson and Prieve, 1984; Derjaguin,

1987; Derjaguin et al., 1947; Prieve et al., 1982). Let us zoom in near a boundary and assume that

the boundary is interacting with the solute particles with an interaction potential W (r), leading to the

force of F = −∇W (r) acting on individual particles see Fig. I.1. The continuity equation for the solute

concentration ρ(r, t) can be written as

∂tρ+∇ · J = 0, (I.1)

where the current density J(r, t) is defined as

J = −D∇ρ+ βDρ(−∇W ) + ρv, (I.2)

where β = 1/(kBT ) and Einstein relation is assumed between the mobility and diffusion coefficient. The

corresponding governing equation equation for the solvent is given by Stokes equation

−η∇2v = −∇p+ f , (I.3)

that is complemented by the incompressibility constraint

∇ · v = 0. (I.4)

In Eq. (I.3), η is the viscosity, p is the pressure, and f represents the body force density acting on the

solvent. Noting that the force acting on the solute particles will be transmitted to the solvent by way

of force balance for each solute particle, we can write

f = ρF = ρ(−∇W ). (I.5)

This relation closes the system of equations for the solvent and the solute that should be simultaneously

solved for the concentration and the velocity profiles.

In the stationary situation, the equation for the concentration reads

−D∇2ρ+ v · ∇ρ+ βD∇ · f = 0. (I.6)

Using the incompressibility constraint, we can also find an equation for the pressure, which reads

−∇2p+∇ · f = 0. (I.7)

vs

W(r)

FIG. I.1 Fluid moves past a solid surface in the presence of a solute concentration gradient due to the interaction
W (r) between the solute particles and the solid surface. The so-called fluid slip velocity is as shown when the
interaction is predominantly repulsive.
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Combining Eqs. (I.6) and (I.7) yields

∇2 [p− kBTρ] +
1

βD
v · ∇ρ = 0, (I.8)

which does not involve the body force that incorporates the molecular interactions.

The potential W is expected to have a very short range, say σ, through which it starts from infinity—

representing the impenetrability or the excluded volume effect of the surface—and decays to zero. If the

wall is impenetrable to the solute particles, the normal current should be negligibly small in the vicinity

of the wall, J⊥ ' 0. If the wall is impenetrable to the fluid, the normal fluid velocity should also be

negligibly small near the wall, v⊥ ' 0. Then, Eq. (I.2) requires that the singular contribution in that

neighborhood due to ∇W is balanced by the gradient of concentration, namely

−kBT∂⊥ρ+ ρ (−∂⊥W ) ' 0, (I.9)

within a distance σ from the wall. This can be solved to give

ρs(r) = ρout e−W (r)/kBT , (I.10)

in the “slip” region, where ρout is the concentration of the solute immediately after the wall potential has

died off. Note that Eq. (I.10) implies a strong depletion of the solute particles near the wall (ρ |wall = 0).

The presence of the body force in the above equations implies that both the concentration and the

pressure have singular behaviors in the vicinity of the wall. However, Eq. (I.8) suggests that the

combination p−kBTρ is a smooth function through the domain of action of the wall potential, and does

not entail any singular terms despite both p and ρ having singular behaviour near the wall. In fact, to

be consistent with the above approximation scheme, the velocity term that represents advection should

be neglected in this equation in the vicinity of the wall, or the so-called slip region.

Using this smoothness property, we can relate the pressure and concentration profiles in the slip region

to the those in the outer region, as follows

ps = pout + kBT (ρs − ρout) = pout + kBTρout

[
e−W (r)/kBT − 1

]
, (I.11)

where pout is the pressure just outside the slip domain, and Eq. (I.10) is used to arrive at the second

form.

The above framework suggests that we can separate the slip region (where the interaction is at work)

from the outer region, see Fig. I.2, work out the velocity of the solvent at the boundary between the

two regions, and use it as a boundary condition for the outer problem.

A. Slip Velocity near Surfaces

The flow field inside the slip region can be determined within our approximation using the Stokes

equation that ensures force balance for the component of the velocity that is parallel to the surface

−η∇2v‖ = −∂‖p, (I.12)

where the body force is neglected because it is assumed to be in the perpendicular direction (f‖ = 0).

Since we are interested in propulsion that is driven by concentration gradient and not external pressure

4



FIG. I.2 We can divide space into the slip region near the surface, where the interaction W (r) is strong, and the
outer region far from the surface. Whereas the pressure p and the solute concentration ρ behave very differently
in the two regions, the combination p − kBTρ behaves smoothly and allows us to relate the values in the two
regions, see Eq. (I.11). The pressure gradient in the slip region then generates a fluid slip velocity, which has
the direction shown when the interaction is predominantly repulsive.

gradient, we assume ∂‖pout = 0. Using Eq. (I.11), Eq. (I.12) gives

−∇2v‖ =
kBT

η
(∂‖ρout)

[
1− e−W (r)/kBT

]
. (I.13)

We note that variations in the (normal) z-direction are considerably stronger than variations in the

parallel direction, we can implement a lubrication-like approximation ∇2 ≈ ∂2
z . The relevant boundary

conditions are η∂zv‖
∣∣
z→∞ = 0 (zero externally applied shear rate) and v‖

∣∣
z=0

= 0 (no-slip condition at

the wall). Integrating the first moment of Eq. (I.13) with respect to the normal coordinate z subject to

the above boundary conditions, we find −
∫∞

0
dz z∂2

zv‖ = v‖
∣∣
z→∞ ≡ vs on the left hand side, where the

slip velocity vs is defined as the asymptotic value of the parallel velocity. We thus obtain

vs = µ∂‖ρout, (I.14)

where

µ =
kBT

η

∫ ∞
0

dz z
[
1− e−W (z)/kBT

]
. (I.15)

is the phoretic mobility of the system. The surface slip velocity outside of the slip layer can be used

together with the Stokes equation to solve for the flow field. Defining the Derjaguin length via

λ2
D =

∫ ∞
0

dz z
[
1− e−W (z)/kBT

]
. (I.16)

we can write the phoretic mobility as

µ =
kBT

η
λ2

D. (I.17)

Note that λ2
D > 0 corresponds to cases where W is predominantly repulsive, whereas λ2

D < 0 corresponds

to cases where W is predominantly attractive. When λD � R, where R is the characteristic radius of

curvature of the surface, the slip boundary condition on the fluid velocity can be used.
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B. Phoretic Drift Velocity of Colloidal Particles

We can now make use of the reciprocal theorem of Lorentz (Happel and Brenner, 1981; Lorentz, 1896;

Stone and Samuel, 1996) to calculate the propulsion velocity directly from the surface slip. To do this,

we start from the definition of stress tensor for an incompressible flow

σij = −pδij + η(∂ivj + ∂jvi), (I.18)

using which, we can write the governing equations of the Stokes flow as

∇ · v = 0, (I.19)

∇ · σ = 0. (I.20)

If we have two solutions of the above equations in the same domain D(t), namely, (v(1),σ(1)) and

(v(2),σ(2)), then we know from Green’s theorem that the following relation holds between them∫
S

dS n · σ(2) · v(1) =

∫
S

dS n · σ(1) · v(2), (I.21)

where n is the normal unit vector perpendicular to the surface S that defines the boundary of D. Let

us now choose (v(1),σ(1)) to be the force-free and torque-free motion of an object with a surface slip

velocity boundary condition, and (v(2),σ(2)) to describe the motion of the same object when dragged

through the viscous fluid by an external force F (2) with velocity V (2). Since v(2)|S = V (2) and solution

(1) is force-free, then the right hand side of Eq. (I.21) vanishes. We can split the velocity of solution

(1) as v(1)|S = V (1) + vs, where V (1) is a net drift velocity for the particle and the relative velocity

component is given by the surface slip velocity vs. With this composition, Eq. (I.21) gives F (2) ·V (1) =

−
∫
S(t)

dS n · σ(2) · vs. Considering that for a sphere of radius a we have n · σ(2) = 1
4πR2F

(2), we find

the drift velocity of the force-free and torque-free sphere as

V = − 1

4πR2

∫
S

dS vs, (I.22)

where we have dropped the superscript (1).

For a diffusiophoretic sphere, we find

V = − 1

4πR2

∫
S

dS µ∇‖ρout = −µ∇‖ρ∞out, (I.23)

where a solution for diffusion equation with vanishing normal flux boundary condition around a sphere

has been used to perform the integration.

In a similar manner, we can show that the angular velocity of a spherical particle is given as

Ω = − 3

8πR3

∫
S

dS êr × vs. (I.24)

Consider a patterned particle with axial symmetry about a given axis n, with a mobility pattern that

can expanded in the basis of Legendre polynomials as µ(θ) =
∑
` µ`P`(cos θ). Then, Eq. (I.24) yields

Ω = −3

4

µ1

R

(
n×∇‖ρ∞out

)
, (I.25)

which shows that the mobility pattern of the particle should have a non-vanishing first harmonic in

order for diffusiophoresis to lead to an angular velocity in a concentration gradient.
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II. MICROSCOPIC THEORY OF DIFFUSIOPHORESIS

The subtle interactions between solute molecules, colloids, and the incompressible solvent that lead to

diffusiophoretic drift can be understood more easily from a microscopic perspective. Let us start from a

reduced two-body description of the problem where we consider a colloidal particle A at positionR and a

solute molecule B at position X, which interact via a the potential WAB(R−X) within the framework

of the Fokker-Planck equation. The relevant governing equation for the two-body distribution reads

(Agudo-Canalejo et al., 2018b)

∂tρAB(R,X, t) = ∇R · µAA ·
[
kBT∇RρAB +

(
∇RW

AB
)
ρAB

]
+ ∇R · µAB ·

[
kBT∇XρAB +

(
∇XW

AB
)
ρAB

]
+ ∇X · µBA ·

[
kBT∇RρAB +

(
∇RW

AB
)
ρAB

]
+ ∇X · µBB ·

[
kBT∇XρAB +

(
∇XW

AB
)
ρAB

]
, (II.1)

where the µ’s are the relevant mobility coefficients that account for the hydrodynamic interactions.

Integrating over X yields

∂tρA(R, t) = ∇R ·
∫
X

µAA(R,X) ·
[
kBT∇RρAB +

(
∇RW

AB
)
ρAB

]
+ ∇R ·

∫
X

µAB(R,X) ·
[
kBT∇XρAB +

(
∇XW

AB
)
ρAB

]
, (II.2)

which is not a closed equation because it involves both single-body and two-body distributions. Assum-

ing the solution is dilute and B particles are point-like, µAA will not depend on X; in fact, it will be a

constant provided there are no boundaries in the system. Then we find

∂tρA(R, t) = kBT∇R · µAA · ∇RρA +∇R ·
∫
X

(
µAB − µAA

)
·
[
kBT∇XρAB +

(
∇XW

AB
)
ρAB

]
, (II.3)

where we have made use of ∇RW
AB = −∇XW

AB and ignored a boundary term. To close the hierarchy,

we use a product approximation

ρAB(R,X; t) = ρA(R, t)ρB(X, t) e−W
AB(R−X)/kBT , (II.4)

which gives us the following simplified result:

∂tρA(R, t) = kBT∇R ·µAA ·∇RρA +kBT∇R ·
[∫

X

(
µAB − µAA

)
· (∇XρB) e−W

AB(R−X)/kBT ρA(R, t)

]
,

(II.5)

Noting that the mobilities are divergence-free due to the incompressibility constraint and using µAB =(
µBA

)T
, we find

∂tρA(R, t) = kBT∇R · µAA · ∇RρA

+ kBT∇R ·
{[∫

X

(
e−W

AB(R−X)/kBT − 1
) (
µAB − µAA

)
· ∇XρB

]
ρA

}
, (II.6)

which is in the form of a drift-diffusion equation

∂tρA(R, t) = ∇R ·Dc · ∇RρA −∇R · [V (R)ρA] , (II.7)

with the diffusivity tensor

Dc = kBTµ
AA, (II.8)
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and the phoretic drift velocity

V (R) = −kBT

∫
X

[
e−W

AB(R−X)/kBT − 1
] [
µAB(R,X)− µAA

]
· ∇XρB. (II.9)

For a spherical colloid of radius R, we have the hydrodynamic mobility tensors as

µAA =
1

6πηR
I, (II.10)

and

µAB =
1

6πηR

[
1

4

(
3
R

r
+
R3

r3

)
(I − êrêr) +

1

2

(
3
R

r
− R3

r3

)
êrêr

]
, (II.11)

where r = |R −X| is the distance between A and B, and êr is the radial unit vector pointing from A

to B. Combining both, we obtain

µAB − µAA =
1

6πηR

[(
−1 +

3

4

R

r
+

1

4

R3

r3

)
(I − êrêr) +

(
−1 +

3

2

R

r
− 1

2

R3

r3

)
êrêr

]
, (II.12)

which is to be inserted in Eq. (II.9). As the expression of the integrand in Eq. (II.9) involves

e−W
AB(r)/kBT − 1, the expression in Eq. (II.12) can be expanded near r = R when we are dealing

with relatively short-range interactions. Setting r = R+ δ, we find

µAB − µAA = − δ

4πηR2
(I − êrêr) +O(δ2), (II.13)

which yields

V (R) = −kBT

η
×

λ2
D︷ ︸︸ ︷∫ ∞

0

dδ δ
[
1− e−W

AB(δ)/kBT
]
×

∇ρ∞B︷ ︸︸ ︷∫
dΩ

4π
(I − êrêr) · ∇XρB(R,Ω) = −µ∇ρ∞B , (II.14)

where Ω represents the solid angle and the phoretic mobility µ is given as defined in Eq. (I.17) above.

When there is no separation of length scales between the range of the interaction and the radius of the

sphere, the full form of the expression in Eqs. (II.9) and (II.12) should be used.

III. SELF-DIFFUSIOPHORESIS

Since diffusiophoresis is force-free—as are all other interfacial phoretic transport mechanisms—it can be

used to make self-propelled particles or microswimmers, if the system generates the gradient internally

(Golestanian et al., 2005). If we consider the case with a small Peclet number, namely, Pe = V R
D � 1,

we can decouple the reaction-diffusion equation that governs the dynamics of the solute molecules from

the Stokes equation that governs the dynamics of the (viscous) solvent. The case with finite Peclet

number poses additional technical complexities (Michelin and Lauga, 2014).

Since the time scale for solute diffusion around the colloid is considerably shorter than the typical time

scale for colloid movement, we can consider the concentration of the solute, C(r), to be a quasi-stationary

solution of the following reaction-diffusion equation

−D∇2C = 0, (III.1)
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subject to the boundary condition on the surface of the colloid at position rs

−Dn · ∇C|r=rs
= α(rs), (III.2)

where the activity α gives the normal flux of solute particles on the surface, and is a measure of the

nonequilibrium activity of the system. The resulting solution for the concentration can be used together

with the slip boundary condition

vs = µ(rs) (I − nn) · ∇C(rs), (III.3)

to obtain the propulsion (or swimming) velocity of spherical colloids as

V = − 1

4πR2

∫
S

dS µ(rs) (I − nn) · ∇C(rs), (III.4)

using Eq. (I.22). Here, we have allowed for position dependent mobility µ(rs), which is a local measure

of the fluid response to the concentration gradient. Note that α and µ can each be positive or negative.

For an axially symmetric distribution of activity, which can be achieved via coatings of catalytic patches

with specific patterns, we can describe the activity as an expansion in appropriate harmonic modes

(Legendre polynomials), namely, α(θ) =
∑
` α`P`(cos θ). The solution for the concentration profile will

read C(r, θ) = C∞ + R
D

∑
`
α`

`+1

(
R
r

)`+1
P`(cos θ). Using the mobility profile µ(θ) =

∑
` µ`P`(cos θ), we

can find the following expression for the propulsion velocity

V = − êz
D

∑
`

(
`+ 1

2`+ 3

)
α`+1

(
µ`

2`+ 1
− µ`+2

2`+ 5

)
. (III.5)

This expression demonstrates the level of symmetry breaking in activity and mobility that is necessary to

achieve self-propulsion, as a manifestation of the celebrated Curie principle (Curie, 1894). Calculations

performed for other shapes have revealed that geometry can also play a key role in providing the necessary

symmetry breaking in combination with activity and mobility (Golestanian et al., 2007; Ibrahim et al.,

2018). The symmetry breaking can also be achieved via shape asymmetry (Michelin and Lauga, 2015;

Popescu et al., 2011; Reigh et al., 2018) or even spontaneously (Michelin et al., 2013). These effects

have also been investigated and verified using Stochastic Rotation Dynamics (SRD) simulations (Reigh

et al., 2018; Rückner and Kapral, 2007).

If we have more than one species of chemicals, as it is common with the case of catalytic chemical

reactions with several reactants and products, the above calculation should be done for all species k,

and the resulting expression for the slip velocity will be a superposition of all the contributions in the

form of

vs =
∑
k

µ(k)(rs) (I − nn) · ∇C(k)(rs). (III.6)

For independent species, C(k) ∼ α(k)/Dk, and the resulting propulsion velocity will be a superposition

of the different contributions. For species that are interlinked through catalytic reactions, the resulting

correlations will be reflected in the result. This suggests that the direction of propulsion is in general

quite sensitive to the details and can even change for the same system under different conditions.

The surface slip velocity profile will lead to a hydrodynamic flow field generated in the vicinity of these

swimmers. In free space in 3D, the flow profile decays as 1/r3 for Janus particles that are fore-aft

symmetric (Golestanian et al., 2005, 2007) whereas a profile that is not fore-aft symmetric will lead to

a stronger flow that decays as 1/r2 (Jülicher and Prost, 2009). When the swimmers are in contact with

a surface, the force monopole that they experience as a result of this contact will change the velocity

profile so that it only decays as 1/r. In Sec. V below we discuss the measured flow field around the
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Pt-PS catalytic Janus swimmer.

IV. STOCHASTIC DYNAMICS OF PHORETICALLY ACTIVE PARTICLES

We now investigate how phoretic activity modifies the stochastic dynamics of a colloid (Golestanian,

2009). In essence we would like to know how we can quantify the behaviour of such active colloids and

identify deviations from Brownian motion. We can describe the dynamics of a spherical colloid and the

chemical field around it in the comoving frame of reference by solving the relevant diffusion equation

for the concentration profile of the solute particles

∂tC(r, t)−D∇2C(r, t) = α(θ, φ, t)δ(r −R), (IV.1)

where α(θ, φ, t) is the surface activity function of the sphere. The time dependent solution to this

equation can be inserted into V (t) = −
∫
dΩ
4π µ∇‖C(R, θ, φ, t) to obtain the instantaneous velocity of

the colloid. The axis of symmetry of the colloid, which points to the direction of propulsion is defined by

the unit vector n(t) = (sin θn(t) cosφn(t), sin θn(t) sinφn(t), cos θn(t)). The stochastic dynamics of n(t)

due to rotational diffusion causes the cloud of solute particles to constantly redistribute, which will in

turn make the velocity of the active colloid fluctuate. We can represent the axially symmetric activity

function in terms of the spherical harmonics as

α(θ, φ, t) =
∑
`,m

(
4π

2`+ 1

)
α` Y

∗
`m(θn(t), φn(t))Y`m(θ, φ). (IV.2)

Once we determine the instantaneous velocity, we can calculate the mean-squared displacement via

∆L2(t) =
∫ t

0
dt1
∫ t

0
dt2 〈V (t1) · V (t2)〉 .

Equation (IV.1) only gives the average density, and the linear relation between the velocity and the

concentration profile suggests that in order to calculate velocity correlations we need to incorporate the

density fluctuations as well. To this end, we start from the Langevin equation ṙi(t) = ui(t) for the

i-th particle whose position is described by ri(t) and is subject to a random noise ui(t), which has a

Gaussian distribution P [u] = exp
[
− 1

4D

∑
i

∫
dt ui(t)

2
]

controlled by the diffusion coefficient. We define

a stochastic density Ĉ(r, t) =
∑
i δ

3(r − ri(t)), which can be seen to satisfy Eq. (IV.1) with a noise

term Q̂(r, t) added to the right hand side. Using the distribution P [u], we can calculate the moments of

the noise term, and show that 〈Q̂(r, t)〉 = 0 and 〈Q̂(r, t)Q̂(r′, t′)〉 = 2D(−∇2)δ3(r − r′)δ(t− t′)C(r, t),

where C(r, t) = 〈Ĉ(r, t)〉.
The dynamics of the system involves a number of different regimes due to the existence of a number

of intrinsic time scales. The rotational diffusion time, τr = 4πηR3/kBT , controls the changes in the

orientation of the sphere. The characteristic diffusion time of the chemicals around the sphere τd =

R2/D, where D = kBT/(6πηa) depends on the radius of the solute particles a. This time scale sets

the relaxation time of the redistribution of the particles around the sphere when it changes orientation.

Finally, the hydrodynamic time that controls the crossover between the inertial and the viscous regimes

is given as τh = R2/ν, where ν = η/ρ is the kinematic viscosity of water that involves the mass density

ρ. We can write the time scales (for water at room temperature and using a typical value of a = 1 Å) in

the following convenient forms: τh = 10−6 (R/1µm)2 s, τd = 10−3 (R/1µm)2 s, and τr = 3 (R/1µm)3

s. This shows that we have a clear separation of time scale with τh � τd � τr, and thus a number of

different dynamical regimes in between these scales.

There are two independent mechanisms driving stochasticity: (i) density fluctuations, which are relevant

for t ∼ τd and for both symmetric (apolar) and asymmetric (polar) coatings of the colloid, and (ii)

rotational diffusion, which is relevant for asymmetric particles when t ∼ τr. The interplay between

these mechanisms will lead to a number of different dynamical regimes with distinct features, including
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anomalous diffusion and memory effects, which we highlight below.

A. Anomalous Diffusion

In the the intermediate regime where τh < t < τd a symmetric particle can instantaneously propel itself

because of polarization of the cloud of solutes due to density fluctuations. This motion, however, will be

decorrelated via density fluctuations themselves, leading to fluctuations without symmetry breaking. We

can use a scaling argument to characterize the nature of this anomalous dynamics. To build a scaling re-

lation, we consider ∆L2 ∼ v(t)2t2, and insert v ∼ µ∇C ∼ µδC/R, to find ∆L2 ∼ µ2〈δC(t)δC(0)〉t2/R2.

The density auto-correlation function can be written as 〈δC(t)δC(0)〉 = 〈δC2〉k(t), involving the density

fluctuations 〈δC2〉 and the kernel k(t) that controls the relevant relaxation mode. Here, relaxation is

controlled by diffusion, hence k(t) ∼ 1/(Dt)d/2 in d-dimensions, and the number fluctuations are con-

trolled by the average number of particles (〈δN2〉 ∼ Nave, as inherent to any Poisson process), which

yields 〈δC2〉 ∼ Cave. The average density is controlled by the average particle production rate (per

unit area) α0 as Cave ∼ (α0R
d−1t)/Rd. Putting these all together, we find that the fluctuations exhibit

anomalous diffusion

∆L2 ∼ α0µ
2

R3Dd/2
t3−d/2 (t� τd). (IV.3)

This expression shows that the active velocity fluctuations are controlled by two mechanisms: particle

production (that controls the density fluctuations) and diffusion of the produced particles. The exponent

3− d/2 indicates superdiffusive behaviour for d < 4. At time scales longer than τd, there is a crossover

to diffusive behaviour

∆L ∼ α0µ
2

Rd−1D2
t (t� τd). (IV.4)

B. Memory Effect

For a given time dependent orientation trajectory, we can calculate the propulsion velocity of the colloid

as a function of time by solving Eq. (IV.1) without the noise term. This calculation reveals that the

propulsion velocity of the colloid at any instant of time depends on the recent history of the orientation

as

v(t) =
v0

τd

∫ t

−∞
dt′M(t− t′) n(t′), (IV.5)

where v0 = −α1µ/(3D) is the mean propulsion velocity, and the memory kernel is given as M(t) =
2
π

∫∞
0
du u3/2

(u2+4)e
−u(t/τd), with asymptotic behaviors M(t) ∼ t−1/2 for t � τd and M(t) ∼ t−5/2 for

t � τd. Note that the propulsion velocity is controlled by the ` = 1 term (α1) in the surface activity

profile.

Since the rotational diffusion of the colloid randomizes its orientation over the time scale τr, the velocity

autocorrelation function takes on the form of a convolution between two memory kernels and the orien-

tation autocorrelation function. Consequently, the mean-squared displacement will have three different

regimes. We find the asymptotic form of

∆L2 ∼ v2
0t

2(t� τd � τr), (IV.6)
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FIG. IV.1 Different contributions to the mean-squared displacement of active colloids. The total mean-squared
displacement can be obtained by summing all of the contributions for asymmetric colloids, and the bottom two
rows (only) for symmetric colloids (Golestanian, 2009).

at short times,

∆L2 ' v2
0t

2 −
(

8

3
√
π

)
v2

0τ
3/2
d

τr
t3/2 (τd � t� τr), (IV.7)

at intermediate times, and

∆L2 ' 2v2
0τr t (τd � τr � t), (IV.8)

at long times, with a smooth crossover between them. For τd < t < τr the memory effect that exists

for self-propelled asymmetric colloids introduces an anomalous anti-correlation (i.e. contribution with

negative sign) in the velocity autocorrelation function and the mean-squared displacement [Eq. (IV.7)].

Such anomalous corrections are reminiscent of the effect of the hydrodynamic long-time tail (Alder and

Wainwright, 1967; Zwanzig and Bixon, 1970). Note, however, that the anomalous −γt3/2 correction

in Eq. (IV.7) corresponds to much longer time scales and should be more easily observable than the

hydrodynamic long-time tail.

C. Effective Diffusivity

At the longest time scales (t > τr), all of the contributions are diffusive, leading to a total effective

diffusion coefficient

Deff =
kBT

6πηR
+

4πα2
1µ

2ηR3

27D2kBT
+

c1α0µ
2

3π2D2R2
, (IV.9)

where c1 = 1.17180. The different terms in the above expression exhibit different R-dependencies, which

causes the asymmetric contribution to be dominant for R & [DkBT/(α1µη)]
1/2

, while the symmetric

contribution takes over when R . α0µ
2η2/(D2kBT ). At the shortest time scales, on the other hand,

the contribution due to phoretic effects will also be dominated by inertial effects that should lead to

ballistic contributions (see Fig. IV.1). Moreover, the different terms depend differently on temperature

as well, with the active contributions typically decreasing as temperature is increased contrary to the

trend observed in the equilibrium Stokes-Einstein relation.

V. EXPERIMENTS ON SELF-PHORESIS

Spherical Janus particles made from polystyrene (PS) beads that are half-coated with platinum have

been shown to self-propel because platinum (Pt) catalyzes the breakdown of hydrogen peroxide into
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FIG. V.1 Sketch of the Pt-PS Janus particle (left). ê is the direction of swimming. The red arrows represent the
current loops that start at the equator of the particle and end at its pole. The reaction cycle (right), including
two sub-cycles with fluxes α and γ, one of which involves ionic intermediates (Ebbens et al., 2014; Ibrahim et al.,
2017).

water and oxygen

H2O2
Pt−→ H2O +

1

2
O2, (V.1)

and the continuous flux of the reaction products establishes a steady gradient across the body of the

Janus particle (Howse et al., 2007). Using the Active Brownian Particle model, which was developed

for the purpose of analyzing the stochastic trajectories observed from this experiment, it was possible

to extract the average propulsion speed of this swimmer as a function of the fuel concentration C. It

was observed that the speed depends on the fuel concentration according the Michaelis-Menten rule

V (C) = V∞ ·
C

C +KM
, (V.2)

where KM is the relevant Michaelis constant. This behaviour is consistent with the catalytic activity

that drives the propulsion by setting up the stationary-state gradient, and suggests that the reaction

must include a diffusion-limited binding step followed by a reaction-limited step

H2O2 + Pt
k1−→ Pt(H2O2)

k2−→ H2O +
1

2
O2 + Pt. (V.3)

The swimming speed was also found to depend on the size of the colloid as V ∼ 1/R most of the time,

which could be for different reasons, for example a competition between the diffusion- and reaction-

limited steps of the catalysis and their interplay with the finite size of the colloid (Ebbens et al., 2012).

It is also possible to make self-phoretic active colloids that have spontaneous angular and translational

velocities at the same time (Ebbens et al., 2010).

Since the reaction was known to involve only (electrostatically) neutral components, it was a surprise

when it was experimentally discovered that adding salt to the solution affects the swimming speed

strongly (Brown and Poon, 2014; Ebbens et al., 2014). A possible explanation for this behaviour has

been proposed by postulating the existence of ionic intermediates in the catalytic reaction cycle that

will give rise to closed loops of current on the platinum coat, as shown in Fig. V.1 (Ebbens et al.,

2014; Ibrahim et al., 2017). The specific bi-cyclic topology of the reaction has been constructed based

on the experimental observations. For example, it has been observed that addition of salt does not

significantly affect the rate of consumption of hydrogen peroxide or the rate of production of oxygen,

while it strongly affects the swimming speed (Ebbens et al., 2014). The observations suggest that
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FIG. V.2 Streamlines around freely moving swimming Janus particles obtained experimentally (left) and the-
oretically (right). The background colors represent the magnitude of the velocity rescaled by the swimming
velocity of the Janus particle (Campbell et al., 2019).

the Janus particle employs a self-electrophoretic channel in addition to the neutral self-diffusiophoretic

channel for its motility.

The conjectured current loops on the Pt hemisphere and the dominance of the resulting self-

electrophoretic contribution have a major implication on the distribution of the effective surface slip

velocity: the slip velocity will be concentrated on the Pt side, with a profile that can be represented

with the following simplified form (Das et al., 2015)

vs|r=R =

{
v0(1 + cos θ)(− cos θ)êθ for π/2 < θ < π,

0 otherwise.
(V.4)

This profile has two significant properties: (i) it leads to swimming away from the Pt patch, and (ii) it

is not fore-aft symmetric. Interestingly, any surface slip velocity distribution with these two properties

should lead to a quenching of the orientation of the swimmer in a direction parallel to the surface due

to hydrodynamic interaction. This is indeed observed experimentally (Das et al., 2015). Interactions

between phoretic swimmers and surfaces can lead to a wide variety of different behaviours (Bayati et al.,

2019; Uspal et al., 2015). In this regards, it has been revealed that the Pt-PS swimmer is a special case.

The surface alignment property of the Pt-PS swimmer is not shared by other types, as it arises from its

specific form of the slip velocity; usually, other swimmer prototypes do not possess one or both of the

above-mentioned necessary properties.

While the alignment property corroborated the proposed structure of the slip velocity due to the current

loops, recent measurements of the complete flow field profile around (swimming and stationary) Pt-PS

Janus particles provided a direct visualization of the flow and measurement of the slip velocity profile

(Campbell et al., 2019). As can be seen in Fig. V.2, the slip velocity is maximum in the middle part of

the Pt region, which was in full agreement with the above picture. The measured flow field gave access

to the squirmer Bn coefficients, and revealed that for the Pt-PS Janus swimmer B2/|B1| ' −2.45 < 0,

which is consistent with a pusher, in terms of the classification for hydrodynamic interactions. However,

this experiment has provided a more complete picture with regards to the near-field properties of the

hydrodynamic interactions than a simplistic squirmer of pusher type, which can be used to build a more

faithful representation of the hydrodynamic interactions.

No other prototype phoretic microswimmer has been experimentally characterized as thoroughly and

systematically as the Pt-PS Janus particle.
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ejected�swarm

primary�swarm

FIG. VI.1 Optically driven thermally active colloids self-organize into a moving comet-like swarm under illumi-
nation of a uniform intensity plane wave light source (top left). Colloids can cast partial or complete shadows
on those below them and propel through production of a collective thermal field, vT (yellow arrow), and by
local self propulsion, vs (green arrow), shown here with the magnitude of vT magnified by a factor of five for
presentation. Fluctuations in the swarm shape facilitates ejection of hot colloids at the swarm tip forming faster
moving sub swarms (bottom) (Cohen and Golestanian, 2014).

VI. APOLAR ACTIVE COLLOIDS: SWARMING DUE TO EXTERNAL STEERING

Using light as the external source of energy to induce self-thermophoresis is extremely versatile as it

can be used to engineer collective swarming behaviour (Cohen and Golestanian, 2014). The colloids

then take advantage of the natural asymmetries in the system to create non-equilibrium conditions that

drive them into a range of collective behaviour. Here a simple system is discussed where colloids that

convert light into heat and move in response to self- and collectively generated thermal gradients. The

system exhibits self-organization into a moving comet-like swarm with novel non-equilibrium dynamics.

Although these active colloids are controlled by viscous hydrodynamics, their collective behaviour shows

very dynamic structures with inertial traits. In particular, it exhibits propagation of transverse waves

from back to front of the swarm with no dispersion, ejection of hot colloids from the head of the swarm,

and persistent circulation flow within the swarm. The rich behaviour of the dynamic comet-like swarm

can be controlled by a single external parameter, the intensity of light.

Consider a collection of particles illuminated with a directed light source with uniform intensity I. The

light intensity received at the surface of each colloid is determined by the distribution of the shadows of

the colloids above it, as shown in Fig. VI.1. The light received by each colloid is converted into a heat flux

that increases the temperature of the colloid and the surrounding fluid in an anisotropic way. A particle

with a clear view of the light source will have an illuminated hot top hemisphere and a dark cold bottom
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FIG. VI.2 Using the moving centre of mass swarm frame of reference fields can be reconstructed using time and
ensemble averaging. The swarm fields are axially averaged and presented in cylindrical coordinates (r, z) with
z axis pointing towards the light source and r the radial distance. (a) Density field and average colloid velocity
relative to centre of mass velocity. The relative colloid velocity is represented by the size of the arrows placed
along the streamlines. (b) Density fluctuations normalized by equilibrium fluctuations. (c) Temperature field
with phoretic velocity due to temperature gradients. (d) Temperature fluctuations. The velocity and shape of the
swarm is affected by the dimensionless coupling strength η. (e) Swarm velocity normalized to individual colloid
drift velocity. (f) Radius of gyration of the swarm in the direction perpendicular to the axis of illumination
with error bars show standard deviation over ensemble averaging of 10 simulations (inset showing radius of
gyration in the parallel direction). (g) Kymograph of the centre of mass x location for the section of thickness
∆z = 3σ a distance ztop from the swarm top at time t for η = 25. Colour represents the x value of the centre of
mass around the time average within the displayed window. (h) Snapshots of the swarm conformation at three
successive times as shown by the kymograph in (g) displaying wave propagation from bottom to top. (Cohen
and Golestanian, 2014)

hemisphere. This asymmetric temperature distribution results in the self-propulsion of the colloid via a

process known as self-thermophoresis, with a maximum velocity of magnitude vo = I|DT |/(9κ), where

DT is the thermophoretic mobility (also known as the thermodiffusion coefficient) and κ is the thermal

conductivity, which is set to be equal for the colloid and the solvent for simplicity. When DT is negative,

which is allowed as it is an off-diagonal Onsager coefficient and possible via appropriate surface treatment

of colloids (Piazza and Parola, 2008), the self-propulsion will be predominantly towards the light source

with a velocity vs (see Fig. VI.1), leading to an effective attractive artificial phototaxis. Moreover, all

colloids (whether illuminated or not) will experience a thermodiffusion drift velocity due the temperature

gradient generated by the illuminated colloids, vT = −DT∇T (see Fig. VI.1). The choice of negative

DT causes the colloids to act as both heat sources and heat seekers; a combination that could lead to

self-organization and instability, as seen in a diverse range of non-equilibrium phenomena.

The behaviour of the system depends on the intensity of the light source, which we can represent using

the dimensionless coupling strength η = σI|ST |/κ, where σ is the diameter of the colloid, ST = DT /Dc

is the Soret coefficient, and Dc is the colloid diffusion coefficient. The system self-organizes into a moving
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swarm of apparent constant centre-of-mass velocity Vswarm with a comet-like structure: a high density

head region with the outer most illuminated colloids generating a central hot core, and a relatively

more dilute trailing aggregate in the form of a tail as shown in Fig. VI.1. Axially averaged fields are

presented in Fig. VI.2 along with their fluctuations. The high density head region forms a hot core,

as can be clearly seen in Fig. VI.2a and VI.2c, which pulls the tail of the comet along, and also drives

the fluctuations. Density fluctuations are normalized by the local equilibrium expectation values in

Fig. VI.2b such that any deviation from uniformity indicates non-equilibrium density fluctuations. A

particularly interesting mode of density fluctuations occurs at the very tip of the head region as a result

of the illuminated self-propelled particles (with the strongest vs component) attempting to escape the

influence of the thermal attraction (also at its strongest, as shown by the vector field in Fig. VI.2c),

leading to fluctuations in the swarm shape. These particles usually return to the swarm, although

spectacular ejection events are also observed at the tip with likelihood increasing with η; see Fig. VI.1

(bottom). Density fluctuations at the swarm tip lead to novel temperature fluctuations due to the

transient appearance of heat sources as seen in Fig. VI.2d.

A circulation can be observed in the average colloid velocity streamlines in the swarm centre-of-mass

frame, as shown in Fig. VI.2a; the colloids that are attracted to the hot core reverse their direction

on crossing the shadow boundary. This phenomenon also results from the competition between the

strong thermally induced drift velocity towards the core shown in the vector field of Fig. VI.2c and the

propulsion of individual colloids towards the light source. The partially illuminated colloids that are

near boundary of the swarm introduce a “thermal drag” that slows down the swarm as compared to the

external fully illuminated isolated colloids. Figure VI.2e shows how this slowing down becomes more

prominent as the coupling strength is increased, leading to an effectively sub-linear increase of Vswarm

with respect to η. This suggests the following explanation for the observed circulation. A particle in

the shadowed tail of the swarm, where the thermal attraction of the core is not strong enough to keep

particles within the bulk of the swarm, may be left behind but remain in the shadow. At some point

this inactive colloid will diffuse out of the shadow to become active again propelling towards the source.

As it moves faster individually than in the swarm it may catch up and find itself attracted back to the

hot core creating a circulation. Alternatively, the colloid may escape the influence of thermal attraction

and propel past the swarm. The average shape of the swarm is also affected by the value of η in line

with the above picture, as shown in Fig. VI.2f. The radius of gyration perpendicular (parallel) to the

axis of illumination becomes smaller (larger) as η is increased, resulting in an increased aspect ratio.

Increasing the coupling strength will also make the swarm more dynamic. Transverse waves of colloids

can be observed (Fig. VI.2g and Fig. VI.2h) propagating from tail to head in randomly selected

azimuthal directions, with pronunciation increasing with higher η. The waves appear to be randomly

initiated at the back of the swarm, and propagate with a constant speed (that increases with η) towards

the front without any dispersion, as can be seen from the kymograph displayed in Fig. VI.2g. The

existence of these waves is a result of the competition between the transverse (xy) components of the

self-propulsion and thermal drift velocities, as shown in Fig. VI.1. The undulations arise from the

colloids in the tail region diffusing out of the shadow, aided by the effect of partial illumination upon

crossing the shadow boundary that further drives their motion away from the swarm. The colloids

then become thermally active and attract higher up colloids out of the shadow, thereby initiating a

propagating wave along the swarm length.

VII. MIXTURES OF APOLAR ACTIVE COLLOIDS: ACTIVE MOLECULES

After understanding how nonequilibrium phoretic activity affects the dynamics of single colloidal par-

ticles, we can now study the nonequilibrium interactions between these particles. The simplest case to

consider is the interaction between two different types of apolar (symmetric) active colloids (Soto and

Golestanian, 2014).
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Consider a concentration field C(r) that satisfies the stationary diffusion equation ∇2C = 0, subject to

the boundary condition of production or consumption on the surfaces of colloidal particles. For activity

α, the boundary condition is −D∂rC|r=R = α, which leads to a contribution to the concentration field

of the form C(r) = αR2

Dr . At a distance r away from the colloid that acts as a source or a sink for the

chemical, a colloidal particle will experience a drift velocity of v = −µ∇C = −µαD ∇
(

1
r

)
. Therefore,

our system is governed by a dissipative equivalent of gravitational or Coulomb interactions with a 1/r

potential. There is, however, a peculiar feature when we consider a mixture of, say, type-A and type-B

active colloids. In this case, the symmetry between action and reaction will be, in general, broken. This

can be observed from the drift velocities of A and B particles:

vA = −µA∇C|A = −µAαB∇A

(
R2

D|rB − rA|

)
= −µAαB ·

R2

D
· rB − rA

|rB − rA|3
, (VII.1)

vB = −µB∇C|B = −µBαA∇B

(
R2

D|rB − rA|

)
= +µBαA ·

R2

D
· rB − rA

|rB − rA|3
. (VII.2)

Unless we have a specially fine-tuned system, we have µAαB 6= µBαA, and therefore, the action-reaction

symmetry is broken. We can understand this property as a generalization of electrostatics or gravity in

which for every particle the charge or mass that creates the field is different from the charge or mass

that responds to the field (created by others).

To examine the behaviour of a mixture in the dilute limit, we start by considering two colloids. Assuming

an additional equilibrium interaction potential U(|rB − rA|), which can arise from excluded volume

interaction for example, the particles will experience an additional contribution to the drift velocity

veq
A = −Dcβ∇AU = −veq

B , (VII.3)

where Dc is the diffusion coefficient of the colloids. We can change coordinates from rA and rB to the

relative and centre of mass coordinates, r = rB − rA and rCM = 1
2 (rA + rB). For the velocities, we

obtain

v = vB − vA = (µBαA + µAαB) · R
2

D
· r
r3
− 2Dcβ∇U, (VII.4)

V =
1

2
(vA + vB) =

1

2
(µBαA − µAαB) · R

2

D
· r
r3
. (VII.5)

Equilibration in the relative distance yields

P(r) = Ard−1 exp

{
− (µBαA + µAαB) · R2

DDcr
− 2βU

}
, (VII.6)

where A is a normalization constant. Invoking the analogy to electrolytes, we can define a generalized

Bjerrum length as `B = |µBαA + µAαB|R2/(DDc), which represents the distance at which “energy”

and “entropy” are comparable. Using the Bjerrum length, the stationary distribution for the relative

distance is P(r) ∼ rd−1 exp
(
`B
r − 2βU

)
. Since the centre of mass speed is determined by r as V =

1
2 |µBαA − µAαB| · R

2

Dr2 , we can deduce the distribution of swimming speed as follows

P(V ) = B · e
√
V/V0

V 1+d/2
(VII.7)

where V0 ≡ |µBαA−µAαB|DD2
c

2|µBαA+µAαB|2R2 and B is a normalization constant. The distribution is cut off at Vmax =
1

8D |µBαA − µAαB|.
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FIG. VII.1 Stability of AB2 molecule. The angle φ parametrizes the deviation from a linear chain of the AB2

molecule (left). Plots of Eq. (VII.12) for different values of the parameter µA
µB

− αA
αB

.

A. Designing the Configurations of Active Molecules

When the phoretic interaction strengths are sufficiently strong, the active colloids will form clusters. We

can examine the configurations of different clusters and determine which ones have the potential to form

stable configurations, which can be regarded as stable active molecules. Let us consider a cluster formed

with one A particle and two B particles. We can parametrize reflection-symmetric configurations using

the angle φ defined in Fig. VII.1. We can write down the following expressions for various contributions

to the velocities of the three particles

vA =
µAαB

D
n1 +

µAαB

D
n2 + veqn1 + veqn2, (VII.8)

vB1 = −µBαA

D
n1 − veqn1 −

µBαB

D
· 1

(2 cosφ)2
ex, (VII.9)

vB2 = −µBαA

D
n2 − veqn2 +

µBαB

D
· 1

(2 cosφ)2
ex. (VII.10)

We can invoke the constraint of no penetration between the particles via ni · (vBi − vA) = 0 and obtain

the equilibrium contribution of the velocities as

veq =

(
µBαB

D

)
2− cos 2φ

[
−
(
αA

αB
+
µA

µB

)
+

(
µA

µB

)
cos 2φ− 1

4 cosφ

]
. (VII.11)

Using a kinematic definition Rφ̇ = −ni × (vBi − vA) · ez, we find the following dynamical equation for

the configuration of the molecule

φ̇ =
2

R

(µBαB

D

) sinφ

(2− cos 2φ)

[(
µA

µB
− αA

αB

)
cosφ− 3

8 cos2 φ

]
. (VII.12)

Figure VII.1 shows the behaviour of this dynamical system for different values of the tuning parameter.

When µA

µB
− αA

αB
< 3

8 the dynamical system in Eq. (VII.12) has only one stable fixed point at φ = 0,

which corresponds to a linear B–A–B conformation for the AB2 molecule; since the conformation is

symmetric, the molecule is not self-propelled. At µA

µB
− αA

αB
= 3

8 the dynamical system exhibits a

supercritical pitchfork bifurcation, and for µA

µB
− αA

αB
> 3

8 two stable fixed points appear at φ = ±φs,

defined via cosφs =
(

3/8
µA/µB−αA/αB

)1/3

, while the φ = 0 fixed point becomes unstable. Due to the

symmetry breaking in the conformation, the AB2 molecule will now be self-propelled, with a speed that

can be determined from the above equations in terms of the parameters.

This calculation demonstrates how it is possible to design stable shapes for various active colloidal

molecules using the parameters of the system, namely the values of the activities and the mobilities.
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B. Dynamic Function

For sufficiently large molecules, it is possible to have cases where the conformations of the molecule

change dynamically, and consequently this will be translated to the manifested non-equilibrium function

exhibited by those molecules. To have such dynamical changes, one possibility is to have multiple stable

fixed points and noise-induced transitions between them, presumably across barrier. An interesting

case with such behaviour is the AB3 molecule, which has a stable Y-isomer with no self-propulsion,

and a stable T-isomer with self-propulsion; stochastic switching between them leads to an emergent

run-and-tumble behaviour in a system with a continuous configuration space. Another possibility is the

existence of an oscillatory conformation. When such conformations are symmetric, such as the case for

A4B8, the molecule will exhibit spontaneous oscillations without self-propulsion. In asymmetric cases,

such A5B8, the oscillations can lead to self-propulsion, in a way that is reminiscent of the swimming of

sperm (Soto and Golestanian, 2015).

C. From Structure to Function: A New Non-equilibrium Paradigm

The framework described above can be generalized to cases where different parameters such as size,

surface chemistry, and surface activity are tuned in order to achieve desired clusters and molecules.

With such capabilities, the framework provides a paradigm in which we can design certain structures—

i.e. 3D geometry and conformation—that will exhibit certain non-equilibrium functions entirely due

to their shape. The function can be derived from symmetry properties of the conformations. For

example, axially symmetric molecules will exhibit an intrinsic (self-propulsion) translational velocity,

whereas non-axially symmetric molecules will have intrinsic angular velocity or spin. If the molecules

are “too symmetric” they might not exhibit any mechanical function and can be categorized as inert.

Sufficiently large complexes can spontaneously break time-translation invariance and exhibit oscillations.

The paradigm has similarities to the way proteins are designed from sequences to shapes to biological

function.

VIII. MIXTURES OF APOLAR ACTIVE COLLOIDS: STABILITY OF SUSPENSIONS

As described in the previous section, two different apolar chemically active colloids interact with each

other through the chemical fields that they themselves produce, and a key feature of these interactions

is that they are in general non-reciprocal, see Eqs. (VII.1) and (VII.2). It is therefore pertinent to

investigate the phase behaviour of mixtures of several species of active colloids (Agudo-Canalejo and

Golestanian, 2019). Brownian dynamics simulations of a dilute suspention of many colloids belonging

to different species and interacting through Eqs. (VII.1) and (VII.2) show a variety of phase separation

phenomena. For binary mixtures, the simulations reveal that, while in a large region of the parameter

space the mixtures remain homogeneous, the homogeneous state can also become unstable leading to a

great variety of phase separation phenomena; see Figs. VIII.1(c–e). Here, phase separation is used in the

sense of macroscopic (system-spanning) separation typically into a single large cluster [occasionally into

two; see Fig. VIII.1(c)] that coexists with a dilute (or empty) phase. The phase separation process may

lead to aggregation of the two species into a single mixed cluster, or to separation of the two into either

two distinct clusters or into a cluster of a given stoichiometry and a dilute phase. The resulting con-

figurations are qualitatively distinct for mixtures of one chemical-producer and one chemical-consumer

species, as opposed to mixtures of two producer (or consumer) species; compare Fig. VIII.1(c) and

Fig. VIII.1(e). While the typical steady-state configurations are static, for mixtures of producer and

consumer species it is observed that static clusters can undergo a shape-instability that breaks their

symmetry, leading to a self-propelling cluster. Randomly-generated highly-polydisperse mixtures of up
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FIG. VIII.1 Active phase separation phenomena in mixtures of chemically-interacting particles. (a) Producer
particles repel (attract) particles with positive (negative) mobility, while (b) the opposite is true for consumer
particles. (c) Binary mixtures of producer (blue) and consumer (red) species show, from left to right, homoge-
neous states with association of particles into small molecules, see Section VII, aggregation into a static dense
phase that coexists with a dilute phase, and separation into two static collapsed clusters. (d) The static aggregate
[(c), centre] can undergo symmetry breaking to form a self propelled macroscopic cluster. (e) Binary mixtures of
producer species (blue and red) show homogeneous states without molecule formation, separation into a static
dense phase and a dilute phase that are pushed away from each other, and aggregation into a static collapsed
cluster. (f) Randomly-generated highly polydisperse mixtures (20 different species) can remain homogeneous or
undergo macroscopic phase separation.

to 20 species also show homogeneous as well as phase-separated states [Fig. VIII.1(f)].

This variety of phase separation phenomena can be understood within a continuum theory of the mixture.

Let us consider a system consisting of M different species of chemically-interacting particles, with

concentrations ρi(r, t) for i = 1, ...,M ; and a messenger chemical with concentration C(r, t). The

concentration of species i is described by

∂tρi(r, t)−∇ · [Dc∇ρi + (µi∇C)ρi] = 0, (VIII.1)

which includes a diffusive term with diffusion coefficient Dc, which for simplicity is taken to be equal for

all types, as well as the phoretic drift term with mobility µi which is positive or negative if the particle is

repelled or attracted to the chemical, respectively; see Figs. VIII.1(a) and VIII.1(b). The concentration

of the chemical is described by

∂tC(r, t)−D∇2C =
∑
i

αiρi, (VIII.2)

where the first term is diffusive with coefficient D, and the second represents production or consumption

of the chemical by all particle species. Within this continuum theory for the mixture, we can study

the stability of the homogeneous state, and show that under certain conditions the system undergoes

macroscopic phase separation.
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A. Linear Stability Analysis of the Homogeneous Mixture

We consider small deviations from the homogeneous state, so that the colloid density is described by

ρi(r, t) = ρ0i + δρi(r, t). The net catalytic activity of a mixture is defined as A ≡ ∑i αiρ0i, where we

note that A represents activity in the homogeneous state, while locally we have
∑
i αiρi = A+

∑
i αiδρi.

The chemical concentration can be separated into a (time-dependent) uniform value and the deviations

from this uniform value in response to nonuniformities of the colloid distribution, so that C(r, t) =

C0 + At + δC(r, t). Introducing this into the evolution equation for C(r, t) we obtain an equation for

the deviations δC(r, t) given by

∂tδC(r, t)−D∇2δC =
∑
i

αiδρi. (VIII.3)

Because the small chemical diffuses much faster than the large colloids, the deviations δC(r, t) of the

chemical concentration from the uniform value C0 +At can be assumed to reach a steady state instan-

taneously for each configuration of the colloids, so that from Eq. (VIII.3) we obtain

−D∇2δC =
∑
i

αiδρi. (VIII.4)

Introducing this into the evolution equation for ρi(r, t), and staying only to linear order in δρi(r, t), we

obtain

∂tδρi(r, t) = Dc∇2δρi −
µiρ0i

D

∑
j

αjδρj . (VIII.5)

The linearized system of equations [Eqs. (VIII.5)] with i = 1, ...,M describes the evolution of the

deviations of the colloid density around the homogeneous state. This result is valid at all times for

mixtures with net positive or zero production A ≥ 0; and for mixtures with net consumption A < 0 as

long as the chemical concentration is still large enough that the consumption of chemical by the colloids

can be considered to be taking place in the saturated regime, i.e. at a rate αi < 0 independent of the

local chemical concentration. If K is the (largest) equilibrium constant of the consumption reaction at

the surface of the colloids, then this approach is valid as long as C0 − |A|t � K, i.e. for sufficiently

short experiments with t� (C0 −K)/|A|.
The stability analysis of Eqs. (VIII.5) is done most conveniently by defining the new variables Ui ≡ αiδρi
and the parameters γi ≡ µiαiρ0i/D. The system of equations (VIII.5) can be rewritten as

[∂t −Dc∇2 + γi]Ui + γi
∑
j 6=i

Uj = 0 (VIII.6)

the solution of which is given by a sum of Fourier modes of the form Ui(r, t) = Uqie
iq·reλt. Introducing

this into (VIII.6) finally results in the eigenvalue problem

[λ+Dcq
2 + γi]Uqi + γi

∑
j 6=i

Uqj = 0 (VIII.7)

for the growth rate λ of the perturbation modes with wavenumber q.

By defining λ̃ ≡ −(λ + Dcq
2), the eigenvalue problem (VIII.7) is equivalent to finding the eigenvalues

of a M ×M matrix with M identical rows each given by [γ1 γ2 ... γM ]. Such a matrix has rank 1 and

therefore at least M − 1 of its eigenvalues are equal to zero, λ̃− = 0. Because the trace of a matrix is

equal to the sum of its eigenvalues, the remaining eigenvalue is equal to the trace of the matrix, so that

λ̃+ =
∑
i γi.
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FIG. VIII.2 Stability diagrams and stoichiometry for binary mixtures. (a) Stability diagram for mixtures
of one producer and one consumer species [cf. Fig. VIII.1(c)], and (b) for mixtures of two producer species
[cf. Fig. VIII.1(e)]. In (a) and (b) the boxed legends attached to each quadrant symbolize the “interaction
network” representing the sign of interactions between each species in the system. Phase separation [aggrega-
tion in (a), separation in (b)] can be triggered by addition or removal of particles (density changes) only when
interactions between the two species are intrinsically non-reciprocal. (c) Stoichiometry at the onset of the insta-
bility, obtained from 44 simulations (blue circles) compared to the stability analysis prediction [Eq. (VIII.10)].
(d) Time evolution of the stoichiometry of the biggest cluster arising from aggregation of (α1, α2) = (+,−)
mixtures, demonstrating that the long time stoichiometry is predicted by the neutrality rule [Eq. (VIII.11)] and
is independent of the species’ mobility (blue: α̃2 = −1, µ̃2 = 8 and 12; red: α̃2 = −2, µ̃2 = 4 and 8; green:
α̃2 = −3, µ̃2 = 3 and 5; in all cases N1 = 800, N2 = 200, α̃1 = µ̃1 = 1).

Transforming from λ̃ back to λ, we finally find M − 1 identical eigenvalues λ− = −Dcq
2, and one

eigenvalue λ+ = −Dcq
2 −∑i γi. The latter eigenvalue can become positive, indicating an instability.

When rewritten in the original variables, we find that the homogeneous state becomes unstable towards

a spatially-inhomogeneous state when the following condition holds∑
i

µiαiρ0i < 0. (VIII.8)

The instability corresponds to macroscopic phase separation, in the sense that it occurs for perturbations

of infinite wave length, specifically for perturbations with wave number

q2 < −(DDc)−1
∑
i

µiαiρ0i, (VIII.9)

with those having infinite wave length q → 0 being the first and most unstable. Importantly, the

stability analysis also tells us about the stoichiometry of the different particle species at the onset of

growth of the perturbation, which follows

(δρ1, δρ2, ..., δρM ) =

(
1,
µ2ρ02

µ1ρ01
, ...,

µMρ0M

µ1ρ01

)
δρ1. (VIII.10)

If only a single particle species is present (M = 1), the instability criterion (VIII.8) describes the

well-known Keller-Segel instability (Keller and Segel, 1970), which simply says that the homogeneous

state is stable for particles that repel each other (µ1α1 > 0), whereas particles that attract each other

(µ1α1 < 0) tend to aggregate, with the end state being a featureless macroscopic cluster containing all

particles. In contrast, as soon as we have mixtures of more than one species, the combination of the

instability criterion (VIII.8) and the stoichiometric relation (VIII.10) predicts a wealth of new phase

separation phenomena.

23



B. Phase Separation in Binary Mixtures

For binary mixtures (M = 2), the instability condition (VIII.8) becomes µ1α1ρ01 + µ2α2ρ02 < 0,

and the stoichiometric constraint (VIII.10) implies that when µ1 and µ2 have equal or opposite sign,

the instability will lead respectively to aggregation or separation of the two species. Combining these

criteria we can construct a stability diagram for the binary mixture, although we must distinguish

between two qualitatively-different kinds of mixtures: those of one producer and one consumer species,

see Fig VIII.2(a) where we can choose (α1, α2) = (+,−) without loss of generality; and those of two

producer species, see Fig VIII.2(b). The case of two consumer species is related to the latter by the

symmetry (µ1, µ2)→ −(µ1, µ2). In this way, the parameter space for each type of mixture can be divided

into regions leading to homogeneous, aggregated, or separated states, which correspond directly to those

observed in simulations; compare Figs. VIII.2(a) and VIII.2(b) to Figs. VIII.1(c) and VIII.1(e). We note,

however, that while for (α1, α2) = (+,−) mixtures the simulations are always seen to match the predicted

phase behaviour, for (α1, α2) = (+,+) mixtures once can observe separation in the simulations even

when the continuum theory predicts the homogeneous state to be linearly stable, although proceeding

much more slowly, indicating that in this region separation may be occurring through a nucleation-and-

growth process controlled by fluctuations. This is denoted as the shaded gray region extending past the

instability line in Fig VIII.2(b).

The wide variety of phase separation phenomena arising in these mixtures is intimately related to the

active, non-reciprocal character of the chemical interactions. In particular, it is useful to consider the sign

of both inter-species as well as intra-species interactions. In the stability diagrams in Figs. VIII.2(a)

andVIII.2(b), one finds that each quadrant corresponds to a distinct “interaction network” between

species, as depicted in the boxed legends attached to every quadrant (as an example, the top-right

interaction network in Fig. VIII.2(a) can be read as “1 is attracted to 2, 2 is repelled from 1, 1 is

repelled from 1, and 2 is attracted to 2”). Note that only three regions in the parameter space have

passive analogs: (i) The bottom-right of VIII.2(a) corresponds to electrostatics with opposite charges,

where equals repel and opposites attract, allowing for the formation of small active molecules as studied

in Section VII. (ii) The top-right of Fig. VIII.2(b) corresponds to electrostatics with like charges, where

all interactions are repulsive leading to a homogeneous state. (iii) The bottom-left of Fig. VIII.2(b)

corresponds to gravitation, where all interactions are attractive. The top-left of Fig. VIII.2(a) can be

thought of as the opposite of electrostatics (or as gravitation including a negative mass species), where

equals attract and opposites repel. The remaining four quadrants involve intrinsically non-reciprocal

interactions where one species chases after the other: in Fig. VIII.2(a), a self-repelling species chases

after a self-attracting species; whereas in Fig. VIII.2(b), a self-attracting species chases after a self-

repelling species. Importantly, the most non-trivial instances of phase separation, which are also those

that can be triggered simply by density changes (e.g. by addition or removal of particles), occur in

regions with such chasing interactions, which are in turn a direct signature of non-equilibrium activity.

Fourier analysis of the Brownian dynamics simulations (44 simulations with varying Ni, αi, and µi)

agrees quantitatively with the theoretical prediction (VIII.10) for the stoichiometry at the onset of

the instability; see Fig. VIII.2(c). However, this initial value is not representative of the long-time

stoichiometry of the phases. For (α1, α2) = (+,+) mixtures, shown in Figs. VIII.1(e) and VIII.2(b), we

always observe final configurations with either complete aggregation or separation of the two species.

For (α1, α2) = (+,−) mixtures, shown in Figs. VIII.1(c) and VIII.2(a), we always observe complete

separation, but in this case aggregation leads to a cluster with non-trivial stoichiometry [Fig. VIII.1(c),

centre]. Phenomenologically, we observe that cluster formation in this case proceeds by fast initial

aggregation of the particles of the self-attractive species (αiµi < 0) followed by slower recruitment of

particles of the self-repelling species (αiµi > 0) until the cluster is chemically “neutral”, in the sense

that its net consumption or production of chemicals vanishes, namely

α1N
clu
1 + α2N

clu
2 = 0, (VIII.11)
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FIG. VIII.3 Phase separation induced by a small amount of an active “doping agent”. (a) Simulation snapshots
showing macroscopic aggregation of a previously homogeneous mixture (N1 = N2 = 500, α̃1 = µ̃1 = 1, α̃2 = −1,
µ̃2 = 1/2) after addition of 5 % of a third species (N3 = 50, α̃3 = −5, µ̃3 = 2). (b) Time evolution of the size of
the largest cluster (total number of particles), in the absence and presence of the third species.

where N clu
i is the number of particles of species i in the cluster. The long-time stoichiometry of the clus-

ters thus depends on the activity of the species, but it is independent of their mobility; see Fig. VIII.2(d).

An intuitive explanation for this observation can be provided as follows: once the cluster becomes neu-

tral, the remaining self-repelling particles will no longer “sense” its presence and stay in a dilute phase.

At high values of activity and mobility for the self-attractive species, however, these static neutral

clusters can become unstable via shape-symmetry breaking towards a self-propelled asymmetric clus-

ter [Fig. VIII.1(d)], which also involves the “shedding” of some of the self-repelling particles. Such

self-propelled clusters are possible only thanks to the existence of non-reciprocal interactions.

C. Beyond Binary Mixtures

Going beyond binary mixtures (M > 2), the phase separation phenomenology becomes even more

complex due to the increasing number of parameter combinations, leading to a large variety of possible

interaction networks between the different species. The instability condition (VIII.8), however, remains

extremely useful. Figure VIII.3 demonstrates as an example how a small amount of a highly active

“dopant” third species can be added to an otherwise homogeneous binary mixture in order to trigger

macroscopic phase separation of the whole mixture on demand. Moreover, the instability condition

(VIII.8) can also be used to predict whether highly polydisperse mixtures will phase separate or remain

homogeneous, see Fig. VIII.1(f).
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IX. POLAR ACTIVE COLLOIDS: MOMENT EXPANSION

The description of the collective behaviour of polar active colloids is considerably more complicated

than apolar particles due to the additional complexity that arises from the coupling between polarity

and motion. Here we develop a systematic framework that can accommodate this complexity in terms

of a hierarchical expansion in terms of the moments of the distribution in the Fokker-Planck equation

(Golestanian, 2012; Saha et al., 2014).

A. From Trajectories to Hydrodynamic Equations

We consider a collections of N polar spherical particles of radius R and describe the configuration of

a particle labeled i with position ri(t) and orientation ni(t). The particle experiences deterministic

translational velocity vi and angular velocity ωi, as well as noise characterized by Dc and Dr, which

are the translational and rotational diffusion coefficients. In a medium with uniform temperature T ,

we have Dc = kBT
6πηR and Dr = kBT

8πηR3 , where η is the viscosity of water. The resulting general Langevin

equations for the translational and rotational degrees of freedom are as follows

d

dt
ri(t) = vi + ξi, (IX.1)

d

dt
ni(t) = ωi + ηi × ni, (IX.2)

where ξi and ηi are Gaussian-distributed white noise terms of unit strength. From the stochastic

trajectories, we can define the probability distribution

P(r,n, t) ≡
〈

N∑
i=1

δ (r − ri(t)) δ (n− ni(t))
〉
,

and recast the Langevin equations, which are governing equations for the trajectories, into an evolution

equation for the probability distribution. Defining the rotational gradient operator R ≡ n× ∂n, which

has the properties Rαnβ = −εαβγnγ and R2nβ = −2nβ , allows us to construct the translational and the

rotational fluxes as follows

J = v(r,n) P(r,n)−Dc∇P(r,n), (IX.3)

Jr = ω(r,n) P(r,n)−DrRP(r,n). (IX.4)

Then, we can write the Fokker-Planck equation as a conservation law

∂tP +∇ · J + R · Jr = 0. (IX.5)

To describe the collective behaviour of active particles with phoretic interactions plus translational

self-propulsion, we choose the following forms for the velocities

v(r,n) = v0n− µ∇ψ, (IX.6)

ω(r,n) = χn×∇ψ, (IX.7)

where v0 is the self-propulsion speed and represents a thermodynamic potential such as solute con-

centration (diffusiophoresis), electrostatic potential (electrophoresis), or temperature (thermophoresis).

The resulting Fokker-Planck equation reads

∂tP +∇ · [(v0n− µ∇ψ)P−Dc∇P] + R · [(χn×∇ψ)P−DrRP] = 0. (IX.8)
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Equation (IX.8) is rather complex as it mixes orientation and position. A systematic approximation

framework called moment expansion helps us to tackle this complication. The method builds on the

orientation moments of the distribution, namely, the density ρ(r) =
∫
n
P(r,n), the polarization field

p(r) =
∫
n
n P(r,n), the nematic order parameter Q(r) =

∫
n

[
nn− 1

3I
]
P(r,n) etc, and a hierarchy of

equations derived from Eq. (IX.8), which connect them.

The governing equation for the zeroth moment of orientation is obtain by integrating Eq. (IX.8) over

n. This gives

∂tρ+ v0∇ · p− µ∇ ·
[
(∇ψ) ρ

]
−Dc∇2ρ = 0, (IX.9)

which has a source term in the form of −v0∇ · p due to the self-propulsion of the colloids. Performing∫
n

n× Eq. (IX.8), we can obtain an equation for the polarization field as

∂tp+
v0

3
∇ρ+ v0∇ ·Q− µ∂α

[
(∂αψ)p

]
−Dc∇2p+ χQ ·∇ψ − 2

3
χρ∇ψ + 2Drp = 0. (IX.10)

Continuing this process will produce the interconnected hierarchy of equations for the moments. To

make further progress, we truncate the hierarchy so that we can deal with a finite number of equations.

For sufficiently dilute solutions (i.e. when ρR3 � 1) and in the absence of any external mechanisms

that can lead to alignment, such as external fields or boundaries (Enculescu and Stark, 2011; Palacci

et al., 2010), we can ignore the nematic order and set Q ' 0. This yields

∂tp+
v0

3
∇ρ− µ∂α

[
(∂αψ)p

]
−Dc∇2p− 2

3
χρ∇ψ + 2Drp = 0. (IX.11)

B. Self-consistent Field Equations

To complete the description of the system, we need to specify how the field is generated by the

phoretically active particles. A generic governing equation for the field can be written as

��HH∂tψ −K∇2ψ = sources and sinks, (IX.12)

where K represents the solute diffusion coefficient (diffusiophoresis) or the heat conductivity (ther-

mophoresis) etc. The time derivative term is ignored because we are interested in the long time limit

and assume that solute, heat, etc diffuse much faster than the colloids. Assuming a surface activity

coverage αi(Ωi) for the ith colloid, we can describe the right hand side of Eq. (IX.12) as follows

−K∇2ψ =
∑
i

∫
dSi αi(Ωi) δ(r − ri −RR̂i)

=
∑
i

∫
dSi αi(Ωi)

[
δ(r − ri)−RR̂i ·∇δ(r − ri) + · · ·

]
= R2

∑
i

[∫
dΩi αi(Ωi)

]
−R3

∑
i

[∫
dΩi αi(Ωi)R̂i

]
· δ(r − ri) + · · · . (IX.13)

Assuming all colloids are the same and using the expansion of Eq. (IV.2), we find
∫

dΩα(Ω) = 4πα0

and
∫

dΩα(Ω)R̂ = 4π
3 α1n. Therefore, Eq. (IX.13) reads

−K∇2ψ = 4πR2α0

∑
i

δ(r − ri)−
4π

3
R3α1∇ ·

[∑
i

niδ(r − ri)
]

+ · · · . (IX.14)
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The above form of the equation for highlights its stochastic nature. To proceed, we implement a

mean-field approximation and replace ψ by its average over the trajectories, which yields

−K∇2ψ = 4πR2α0ρ−
4π

3
R3α1∇ · p+ · · · . (IX.15)

This equation now complements Eqs (IX.9) and (IX.11) for a complete approximate description of the

system.

C. Behaviour at Long Times and Large Length Scales

We are interested in the behaviour of the system at time scales sufficiently longer than the rotational

diffusion time of the colloids D−1
r and lengths much larger than the size of the colloid R. A description

of this regime can achieved by ignoring a number of terms in Eq. (IX.11) as follows

��HH∂tp +
v0

3
∇ρ− µ

(
∇2ψ

)
p−(((((

((hhhhhhhµ (∂αψ) (∂αp) −����XXXXDc∇2p − 2

3
χρ∇ψ + 2Drp = 0. (IX.16)

Note that the 4th term is similar to the 3rd term, but it adds a tensorial structure to the equation.

We have ignored it here for simplicity. Inserting an approximate form of Eq. (IX.15), namely ∇2ψ '
−4πR2α0ρ/K, in Eq. (IX.16), we obtain[

(d− 1)Dr + SdR
d−1 α0µ

K
ρ
]
p = −v0

d
∇ρ+

d− 1

d
χρ∇ψ, (IX.17)

where we have written the coefficients explicitly in terms of the dimensionality of space d. Here Sd =

2πd/2/Γ(d/2) is the surface area of the unit sphere embedded in d dimensions. From Eq. (IX.17), we

can find an explicit expression for the polarization in terms of the density and the field, which reads

p =

(
− v03 ∇ρ+ 2

3χρ∇ψ
)(

2Dr + 4πR2α0µ
K ρ

) , (IX.18)

in d = 3. Note that phoretic interaction renormalizes the rotational diffusion of the colloids. Setting

ρ ' ρ0 = const in the denominator of Eq. (IX.18) and inserting the resulting form for p back into Eq.

(IX.9), we obtain the following equation for the density field

∂tρ+ ∇ · Jeff = 0, (IX.19)

where the effective flux is defined as

Jeff = −Deff∇ρ− µeff(∇ψ)ρ, (IX.20)

in terms of the effective diffusion coefficient

Deff = Dc +
v2

0

6(Dr + 2πR2α0µρ0/K)
, (IX.21)

and the effective phoretic mobility

µeff = µ− v0χ

3(Dr + 2πR2α0µρ0/K)
. (IX.22)

We thus find that self-propulsion leads to an enhancement of the translational diffusion of the colloid

on time scales longer than the rotational diffusion, while the combination of phoretic alignment and

self-propulsion leads to a renormalization of the translational phoretic mobility at long times.
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FIG. IX.1 Stability of the suspension of polar phoretic active colloids as determined by the condition Γ < 0,
which ensures that the colloids will point in the direction of higher concentrations and actively swim towards
the denser region.

In stationary state, Eq. (IX.19) is satisfied if Jeff = 0, which yields

ρ(r) = ρ0 exp

[
− µeff

Deff
ψ(r)

]
. (IX.23)

This is a generalized Boltzmann distribution, which will allow us to use analogies to equilibrium theories

of electrolytes.

1. Stationary State Polarization

We can insert the stationary distribution into Eq. (IX.18) to find a direct relationship between the

polarization and the density gradient as follows

p = −Γ∇ρ, (IX.24)

where the response coefficient is given as

Γ =
Dc

v0
χ+ µ/2

3Dr

v0

(
1 + 2πR2α0µρ0

KDr

)
µ− χ

, (IX.25)

in terms of µ and χ, which can both be either positive or negative. The parameters can thus be tuned

such that Γ > 0, in which case polarization tends to stabilize accumulation of particles via a tendency

for the particles to swim away from high density regions. When Γ < 0, on the other hand, the particles

tend to be aligned with the concentration gradient and the particles tend to swim towards already

crowded regions, hence instigating an instability. Therefore, the alignment or polarization tendencies of

the system as controlled by χ will determine the phase behaviour of the system in competition with the

translational or positional tendencies that are controlled by µ (see Fig. IX.1).
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2. Generalized Poisson-Boltzmann Equation

Going back to Eq. (IX.15), we can now eliminate the polarization by inserting its explicit form from

Eq. (IX.18). This yields

−∇ ·
(
Keff∇ψ

)
= 4πR2α0ρ+

((((
((((

((((
((hhhhhhhhhhhhhh

2π

9

R2α1v0

(Dr + 2πR2α0µρ0/K)
∇2ρ + · · · , (IX.26)

where the K coefficient is renormalized due to the polarization of the Janus particles as follows

Keff = K − R3α1χρ

(Dr + 2πR2α0µρ0/K)
. (IX.27)

This phenomenon is analogous to the emergence of the polarization field inside dielectric material, which

is accounted for by an effective dielectric constant that reduces or screens the field. We can simplify

further and assume a constant density profile in Eq. (IX.27), and therefore treat Keff as a constant.

Putting Eq. (IX.23) into this simplified form of Eq. (IX.26), we find

−Keff∇2ψ = 4πR2α0ρ0 exp

[
− µeff

Deff
ψ(r)

]
. (IX.28)

This equation is reminiscent of the Poisson-Boltzmann equation for electrolytes, which should be solved

subject to the normalization constraint

N =

∫
ddr ρ(r) = ρ0

∫
ddr exp

[
− µeff

Deff
ψ(r)

]
. (IX.29)

We can identify two distinct classes described by the above equations:

� Electrostatic, in which like charges predominantly repel. This corresponds to α0µeff > 0.

� Gravitational, in which like charges predominantly attract. This corresponds to α0µeff < 0.

We can define a dimensionless field as

Ψ ≡ µeffψ

Deff
· sgn(α0µeff), (IX.30)

and a characteristic Bjerrum length scale

` ≡ R2|α0µeff |
KeffDeff

, (IX.31)

FIG. IX.2 Different geometries for the electrostatic and gravitational cases in analogy with cases where Poisson-
Boltzmann equation has been studied.
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as well as a corresponding Debye length κ−1 defined via

κ2 = 4π`ρ0. (IX.32)

Then our Poisson-Boltzmann equation reads

−∇2Ψ = κ2e∓Ψ, (IX.33)

where the sign choice is ∓ = −sgn(α0µeff). Equation (IX.33) is subject to the constraint N =

ρ0

∫
ddr e∓Ψ.

In analogy with studies of Poisson-Boltzmann equation, we can look for exact solutions of the above

equation under confinement, by applying the following boundary condition

−∂⊥Ψ|S = 4π`N/A, (IX.34)

which we obtain by invoking Gauss theorem, as well as symmetry considerations. We will now consider

a number of different geometries as shown in Fig. IX.2.

In the electrostatic case, we can obtain exact solutions in cases with 1D and 2D confinement (Levin,

2002). When the colloids are confined between two plates of lateral size L and distance 2h, the exact

density profile is found as

ρ(x) =
ρ0[

1 + 2π2`2

k2

(
N
L2

)2]
cos2

(
kx√

2

) , (IX.35)

where ρ0 is the concentration at the edge of the confining wall, and k satisfies the following transcendental

equation (
kh√

2

)
tan

(
kh√

2

)
= π`h

(
N

L2

)
, (IX.36)

The profile of Eq. (IX.35) describes an accumulation of the colloids near the confining boundary that is

analogous to the phenomenon of counterion condensation (Levin, 2002), and a resulting depletion zone

in the central region of the system. In the strong coupling limit when N`h/L2 � 1, we can obtain an

approximate solution to Eq. (IX.36) as kh ' π√
2

[
1− 1

π(N`h/L2)

]
. In this limit, the ratio between the

density of the colloids in the middle and at the edge can be found as ρm
ρ0
' 1

4 (N`h/L2)−2, which shows

Pm 

PO 

1 

Unstable 

41r£hN/ L2 Nℓ/L Nℓ/hor or

FIG. IX.3 The density of colloids in the middle of the confined space relative to the density at the edge as a
function of the dimensionless phoretic coupling constant for the gravitational case.
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a significant depletion effect. Note that the depletion becomes stronger as h is increased, when other

parameters are kept fixed. The length scale 1/[2π`(N/L2)] is equivalent to the Gouy-Chapman length

in the electrostatic analogy (Levin, 2002).

For an active colloidal solution confined in a cylindrical cage of length L and width 2h, the density

profile is obtained as

ρ(r) =
ρ0[

1 + 1
2

(
N`
L

)]2 [
1− 1

8k
2r2
]2 , (IX.37)

where k is given by following closed-form expression

kh =

√
8(N`/L)

2 + (N`/L)
. (IX.38)

In this geometry, the strong coupling limit corresponds to N`/L � 1, in which case we obtain a

measure of depletion as follows ρm
ρ0
' 4 (N`/L)−2, which is independent of the confinement size in this

geometry. The ratio `N/L is analogous to the so-called Manning-Oosawa parameter for highly charged

rodlike polyelectrolytes (Levin, 2002). The same type of profile is obtained when the colloidal solution

is confined in 3D to a spherical cage of diameter 2h, where in the strong coupling limit defined via

N`/h� 1, we have ρm
ρ0
' 21.4 (N`/h)−2. Here, the depletion is inversely related to the size of the cage,

i.e. it decreases for larger cages.

In the gravitational case, we observe accumulation of the colloidal particles at the centre of the confined

region, which contrasts from the electrostatic case, while the potential profile Ψ(r) is still peaked at the

centre as in the electrostatic case. The relevant coupling constants denoted as g(d) are, g(1) = N`h/L2

(1D), g(2) = N`/L (2D), g(3) = N`/h (3D), as discussed above. As g(d) increases, the ratio ρm/ρ0

increases as well, signalling accumulation at the centre. This structure, which is still a relatively dilute

as of particles that are free to diffuse within the confined region, is analogous to a “colloidal star”, in the

gravitational analogy. This dilute structure is stable up to a critical point gc(d) beyond which a stable

(stationary-state) solution no longer exists; see Fig. IX.3. For example, in 1D the onset of instability

occurs at gc(1) = 1/2π, at which (ρm/ρ0)c = 3.29, while similar thresholds hold for the 2D and 3D

confinement cases (Landau and Lifshitz, 2013). The instability occurs because the particles that act as

sources for the potential attract each other and result in a suspension that becomes increasingly denser

and more attractive. In this case, the flux at the outer boundary of the system cannot balance the field

generated inside the confined region, which leads to an uncontrolled buildup of thermodynamic energy

associated with the potential Ψ. This state of the system can be called a “colloidal supernova” in our

gravitational analogy. However, we should bear in mind that the analogy is not exact as the colloidal

system operates in the dissipative regime, in contrast with the inertial and conserved dynamics of the

gravitational system.

3. Additional Generalizations

In our simplified description, we have so far ignored a number of important features that will affect

the dynamics of catalytically active Janus particles. Typically, the catalytic activity on Janus particles

involves reactions that convert substrates (as reactants are called in the biochemistry literature) into

products, i.e. S→P. This means that there a number of chemical species in the solution, each producing

their own gradients and contributing to phoretic transport with their corresponding mobilities, as shown

in Eq. (III.6).

Moreover, the mobilities will in general be tensors for Janus particles, allowing in general different drift

velocities along the polar axis of the particle and perpendicular to it. Additionally, the Janus structure
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FIG. IX.4 Four different mechanisms or channels through which a Janus particle responds to gradients in
substrate concentration (Saha et al., 2014).

will introduce an alignment response to a concentration gradient due to the angular velocity given in

Eq. (I.25). Finally, the variations in the local concentration of the substrate molecule that fuels the

propulsion will also modulate the swimming velocity v0. Putting together all these contributions, we

find that a single Janus particle can respond to variations in substrate concentrate via four different

channels or mechanisms as summarized in Fig. IX.4.

Taking these effects into consideration will give us a complex phase diagram that includes a range of

collective dynamical regimes including clustering, pattern formation, aster condensation, plasma oscilla-

tions, and spontaneous oscillations (Saha et al., 2014). The existence of such a range of different regimes

can be traced back to different possibilities provided by the positional and orientational interactions,

as discussed in Sec. IX.A above. When µ < 0 and χ > 0, the particles are translationally attracted to

one another while they would also tend to orient towards each other and swim towards one another;

this is a clear cut case of collapse instability. If, on the other hand, µ > 0 and χ > 0, they repel each

while they tend to orient towards each other and swim to one another; this is a frustrated case, which

can lead to oscillations and pattern formation. Similar observations have been reported from studies

using Brownian dynamics simulations (Pohl and Stark, 2014; Stark, 2018). Enhanced density fluctu-

ations and clustering that can arise from phoretic instabilities as discussed above have been observed

experimentally in suspensions of catalytic Janus swimmers (Palacci et al., 2010, 2013).

X. POLAR ACTIVE COLLOIDS: SCATTERING AND ORBITING

The existence of different modes of chemotactic coupling to position and orientation has interesting

implications on how two active colloids interact with one another (Saha et al., 2019).

When a polar active colloids interacts with an apolar source of chemical, two different types of behaviour

can emerge (see Fig. X.1). An active colloid that tends to align with the local gradient of an externally

imposed chemical field can be trapped by a source of fuel. A trapped swimmer either comes to rest at

a fixed distance from the source or executes periodic orbits. By tuning initial condition, it is possible

to transition to a state where the swimmer interacts with the source for a short period before running

away, thereby undergoing scattering.

Two interacting chemotactic active colloids, which can rotate their polar axis to align with an external

chemical gradient, form new bound states by cancellation of velocities rather than by minimization of a
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FIG. X.1 Typical trajectories of an active colloid in an isotropic source of fuel, illustrating the role of initial
conditions and active rotation of the polar axis. The swimmer can be captured by a source of chemicals or
interact with it briefly before scattering, depending on initial conditions. If it approaches the source with an
impact parameter b lower than a threshold, a bound state is formed when self-propulsion and phoretic interactions
balance each other. The swimmer on the left is trapped when the polarity of the aligns with the local chemical
gradient marked with dotted orange lines. The swimmer on the right is scattered as it cannot be trapped.
(Figure by Suropriya Saha).

free energy. The interactions are dynamical in origin, resulting from an interplay of self propulsion and

gradient-seeking mechanisms, and are thus non-central and non-reciprocal. Bound states are formed

where the distance between their centres and relative orientation of their polarity remains fixed or

traces a periodic cycle. These states fall in two broad classes: (i) active dimers, where the centre of mass

translates linearly and (ii) orbits, where the centre of mass moves in a closed orbit. A necessary condition

is that the chemotactic alignment response of at least one colloid in the pair must be positive. Similarly

to the case of a single swimmer near a source, they can unbind and scatter when the surface activity is

changed. The fixed points underlying the bound states correspond to the case when exactly one of the

two colloids is stationary, and show that the transition happens through bifurcations. These findings are

robust upon the introduction of hydrodynamic interactions and (relevant) thermal fluctuations (Saha

et al., 2019). Similar effects have been studied for a system of active colloids under confinement (Kanso

and Michelin, 2019).

XI. NON-EQUILIBRIUM DYNAMICS OF ACTIVE ENZYMES

Enzymes are molecular machines that catalyze chemical reactions. The appropriate description of a

chemical reaction is a Kramers (escape) process in the reaction space in which the system aims to go

from an initial higher energy state, which corresponds to the substrate to a final lower energy state,

corresponding to the product, by overcoming an energy barrier. A schematic description of how enzymes

work can be constructed as follows (see Fig. XI.1). Consider a chemical reaction S→P as an activated

process along a specific reaction coordinate, with a barrier that is considerably larger than kBT ; this

transition will happen very slowly on its own. An enzyme can speed up this reaction if upon binding to

the substrate it can effectively lower the barrier, or perhaps more accurately, open up a new trajectory

with a lower barrier that was not accessible before. Therefore, enzymes are drivers of non-equilibrium

activity at the right time at the right place.

For the reaction path described in Fig. XI.1, the overall rate of product formation follows the so-called
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FIG. XI.1 The interaction of an enzyme and its substrate effectively lowers the energy barrier along the relevant
reaction coordinate and speed up a chemical reaction, which would normally happen, but at a much slower rate.
Solid line represents a free reaction and dashed lined represents a reaction that is facilitated by an enzyme.

Michaelis-Menten rule

d

dt
P = kE0, (XI.1)

where E0 is the bulk concentration of enzymes, and k is the effective catalytic reaction for a single

enzyme, given as

k = kcat
S

K + S
, (XI.2)

with K being the Michaelis constant.

A. Enhanced Diffusion of Enzymes

There have been a number of experimental reports on the effect of catalytic activity on the diffusion of

enzymes (Muddana et al., 2010; Riedel et al., 2015; Sengupta et al., 2013, 2014). Typically, the enzymes

have been found to undergo diffusion with an effective diffusion coefficient that depends on the substrate

concentration, which can be approximately described via

Deff(S) = D0 + ∆D
S

K + S
, (XI.3)

where D0 ≡ D(S = 0), and ∆D/D0 is often of the order of a fraction of one (ten percent or so)

(Muddana et al., 2010; Riedel et al., 2015; Sengupta et al., 2013, 2014).

There are several mechanisms that can contribute to enhanced diffusion of enzymes with varying degrees

of significance (Agudo-Canalejo et al., 2018a; Golestanian, 2015):

(i) self-phoresis, due to self-generated chemical gradients or temperature gradients if the reactions are

exothermic. This contribution can typically yield ∆D/D0 ∼ 10−16 for fast enzymes.

(ii) boost in kinetic energy, as caused by the release of the energy of the reaction to the centre of

mass translational degrees of freedom by equipartition. This mechanism leads to an effective diffusion
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coefficient given by

Deff = D0

[
1 +

2

3

γQ

kBT
kτb

]
, (XI.4)

where γ represents the fraction of the released energy of reaction Q that is transferred to the centre

of mass, and τb is the time scale characterizing the decay of the inertial boost. Using an estimate of

γ = 10−4 based on the number of degrees of freedom in a typical enzyme, as well as kcat = 105 s−1 and

Q = 40kBT for a fast exothermic enzyme like catalase, we find ∆D/D0 ∼ 10−9.

(iii) stochastic swimming due to cyclic stochastic conformational changes associated with the cat-

alytic activity of the enzyme (Bai and Wolynes, 2015; Golestanian and Ajdari, 2008; Najafi and Golesta-

nian, 2010). We can use a simple bead-spring model to estimate this effect. Let us consider two spherical

beads of radius R that are attached to each by a linker, that can undergo stochastic elongations with

amplitude b. The amplitude of these deformations is typically much smaller than the size of the enzyme,

e.g. when they arise from mechanochemical coupling of electrostatic nature (Golestanian, 2010) (analo-

gous to phosphorylation) or structural changes due to ligand binding (Sakaue et al., 2010). However, it

is possible that the local heat release could disturb the relatively more fragile tertiary structure of the

folded protein for a short while, leading to large amplitudes; thereby suggesting b . R .

To calculate the contribution of such conformational changes to effective diffusion coefficient, we use a

simple model in which the conformational change is described by one degree of freedom L(t) representing

elongation of the structure along an axis defined by a unit vector n(t). To achieve directed swimming, we

need at least two degrees of freedom to incorporate the coherence needed for breaking the time-reversal

symmetry at a stochastic level (Najafi and Golestanian, 2004), and we know that realistic conformational

changes must involve many degrees of freedom. The randomization of the orientation, described via

〈n(t) · n(t′)〉 = e−2Dr|t−t′|, will turn the directed motion into enhanced diffusion over the time scales

longer than 1/Dr. Since the same can be achieved through reciprocal conformational changes described

by one compact degree of freedom, we will adopt this simpler form. The stochastic motion of the enzyme

can be described by the Langevin equation

v(t) ' g
(

d

dt
L(t)

)
n(t) + ξ(t), (XI.5)

where α is a numerical pre-factor that depends on the geometry of the enzyme and ξ(t) is the Gaussian

white noise that will give us the intrinsic translational diffusion coefficient D0.

We can describe the combined mechanochemical cycle using a two-step process, which takes the enzyme

from its free state through the reaction that is accompanied by the deformation with rate k, and a

relaxation back to it native state with rate kr. This is a simplification of a more realistic model with

three states (free, substrate-bound, and reacted-deformed) and k is to be understood as the combined

catalytic rate that has the Michaelis-Menten form as defined above. Therefore, we can describe L(t) as

a telegraph process and calculate the elongation speed auto-correlation function as〈
d

dt
L(t) · d

dt′
L(t′)

〉
= 2b2

(
kkr
k + kr

)[
δ(t− t′)− 1

2
(k + kr)e

−(k+kr)|t−t′|
]
. (XI.6)

By combining this with the orientation auto-correlation, we can calculate the effective diffusion coefficient

of the enzyme, which gives the following correction

Deff = D0 +
1

3
g2b2

(
kkr
k + kr

)
2Dr

2Dr + k + kr
, (XI.7)

Even for the fastest enzymes, we typically have kr ≈ Dr � k. Using an upper bound of b ∼ R, we can

approximate Eq. (XI.7) as ∆D ≈ kR2. For catalase, we obtain ∆D ≈ 1µm2s−1, which gives an upper

36



x1
R

x2

x
2a

(a) (b)

û1

û2

û1 û2
(c)

FIG. XI.2 (a) The asymmetric dumbbell model: a is the typical size of the protein, which is made of two
subunits with orientations u1 and u2, and located at positions x1 and x2. R denotes the center of mass of the
protein and x its elongation. (b) The dumbbell fluctuates around the equilibrium position of the interaction
potential. The red arrows represent the forces experienced by the subunits when the dumbbell is contracted or
extended. (c) The orientations of the subunits fluctuate around an equilibrium configuration.

bound of ∆D/D0 ≈ 10−2. This is one order of magnitude smaller than the observed values.

(iv) collective heating caused by treating enzymes as mobile sources of heat for exothermic reactions

(Golestanian, 2015). This effect will cause the global temperature of the system to raise, leading to

an enhancement of the fluctuations as well as simultaneously decreasing the viscosity of the solution.

The combined effect can lead to ∆D/D0 ∼ 10−2 − 10−1 depending on the size of the container. The

nonlinearity in the heat conduction equation arising from the dependence of the heat source on temper-

ature can lead to the possibility of the formation of shock waves and fronts, which could contribute to

observation of enhanced diffusion after time-averaging.

(v) modified equilibrium due to the changes in the hydrodynamic couplings between the different

modules of an enzyme while undergoing thermal fluctuations, caused by binding and unbinding of

chemicals (Adeleke-Larodo et al., 2019b; Illien et al., 2017a,b). This effect originates from the observation

that the centre of mass diffusion of compound asymmetric objects depends on their configuration because

their internal degrees of freedom are coupled to the centre of mass translation. This phenomenon can be

studied using a simple asymmetric dumbbell model, which represent the modular structure of a generic

enzyme; see Fig. XI.2(a).

We begin our analysis with the Smoluchowski equation for a pair of Brownian particles interacting

with the potential U . The probability P (x1,x2,u1,u2; t) of finding subunit α at position xα and with

orientation uα at time t has the following evolution equation

∂tP =
∑

α,β=1,2

{
∇α ·Mαβ

TT · [(∇βU)P + kBT∇βP ] +∇α ·Mαβ
TR ·

[
(RβU)P + kBTR

βP
]

+ Rα ·Mαβ
RT · [(∇βU)P + kBT∇βP ] + Rα ·Mαβ

RR ·
[
(RβU)P + kBTR

βP
]}

, (XI.8)

where Mαβ
AB are elements of a mobility matrix which couples the interactions between the translational

(T) and rotational (R) modes of the subunits. We now use the centre of mass and elongation coordinates,

R = (x1 + x2)/2 and x = x2 − x1, to find the Smoluchowski equation for P

∂tP =
kBT

4
∇R ·M · ∇RP +

1

2
∇R · Γ · (∇xU)P +

kBT

2
(∇R · Γ · ∇xP +∇x · Γ · ∇RP )

+∇x ·W · [kBT∇xP + (∇xU)P ] +
∑

α,β=1,2

Rα ·Mαβ
RR · [kBTR

βP + (RβU)P ]

+
∑
α=1,2

{
∇α ·Mαβ

TR · [(RβU)P + kBTR
βP ] + Rα ·Mαβ

RT · [(∇βU)P + kBT∇βP ]
}
, (XI.9)
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where the new mobility coefficients are mixtures of the previous ones (Adeleke-Larodo et al., 2019b;

Illien et al., 2017a). Using a generic form for the interaction potential U = V0(x) + V01(x)n · u1 +

V02(x)n · u2 + V12(x)u1 · u2 + · · · , we can average Eq. (XI.9) over x and obtain a reduced equation

for the orientational degrees of freedom, involving the definitions P =
∫

dxx2P and 〈·〉 = 1
P

∫
dxx2 · P .

The averaging procedure is motivated by the observation of a clear separation of the time-scales in the

problem. The dumbbell possesses three time-scales, each describing the relaxation time of one of its

degrees of freedom. The slowest of the three is the relaxation time of the centre-of-mass coordinate

R. Given a potential that can be Taylor expanded around the minimum, the quadratic term gives the

effective spring constant of the potential (k) and the time-scale for x to return to its equilibrium value,

τs = ξ/k, where ξ is the friction coefficient of the enzyme. The rotational diffusion time of the enzyme

τr, which determines the rate of the loss of memory of the orientation, is of the order ξa2/kBT . The

ratio of the two times τs/τr goes as kBT/ka
2 ∼ δx/a, which is a the relative deformation of the enzyme

due to thermal fluctuations and is therefore bounded by unity. With this consideration, we can average

over the separation of the subunits assuming n, u1 and u2 to be fixed.

We define the lowest order moments of the average distribution with respect to the three unit vectors n,

u1 and u2 as ρ ≡
∫
n,u1,u2 P, p ≡

∫
n,u1,u2 nP and pα ≡

∫
n,u1,u2 u

αP and obtain the respective evolution

equations in the moment expansion of the resulting equation (Golestanian, 2012). To the lowest order,

this yields

∂tρ =
kBT

4
〈m0〉∇2

Rρ+ kBT
〈γ0

x

〉
∇R · p+

1

3

[〈
γ0V01

x

〉
∇R · p1 +

〈
γ0V02

x

〉
∇R · p2

]
, (XI.10)

∂tpi = −kBT

3

〈γ0

x

〉
∂Riρ− 2kBT

〈w0

x2

〉
pi −

2

3

∑
α=1,2

〈
w0V0α

x2

〉
pαi , (XI.11)

∂tp
α
i = −2kBT 〈ψ(α)

0 〉pαi +
1

9

〈
γ0V0α

x

〉
∂Ri

ρ− 2

3
[〈ψ(α)

0 V12〉pβi + 〈ψ(α)
0 V0α〉pi − 〈Mαβ

RR 0V12〉pβi ],(XI.12)

where the coefficients are the the corresponding amplitudes of the mobility tensors in a harmonic ex-

pansion (Adeleke-Larodo et al., 2019b; Illien et al., 2017a). A closed equation for the density ρ can be

now obtained by taking the stationary limits of these equations, which yields

∂tρ(R; t) = Deff∇2
Rρ, (XI.13)

where the effective diffusion has the form

Deff = Dave − δDfluc =
kBT

4
〈m0〉 −

kBT

6

〈γ0/x〉2
〈w0/x2〉 [1 + corrections] . (XI.14)

This result highlights the fact that due to the coupling between the internal degrees of freedom and the

centre of mass translation, the effective diffusion coefficient is composed of an average contribution that

relates to the average mobility of the parts that make the enzyme, and a fluctuation–induced correction,

which is universally negative. To obtain a physical intuition for the result, consider the force dipole

created by the dumbbell on the fluid; see Fig. XI.2(b). If this fluctuating dipole has a nonvanishing

average, the asymmetry of the dumbbell couples the dipole to a net drift velocity. Considering, for

instance, the force experienced by the second subunit over the timescale when the radial coordinate has

equilibrated but the orientation of the dumbbell is frozen, 〈F2〉 = −〈U ′〉n, we notice that a nonzero

average dipole will result provided 〈U ′〉 6= 0. Assuming that the average at the relevant timescale is

taken with the weight e−U/kBT , it is easy to see that 〈U ′〉 does not vanish in any dimension other than

one (even though U ′|x=xeq
= 0) due to the entropic contributions to sampling of the configuration space

when using radial coordinates. The resulting contribution to the diffusion coefficient is proportional to

−〈U ′〉2, which highlights a similarity to dispersion forces (London, 1937). The fluctuations can also

explore the orientational degrees of freedom of the sub-units, as shown on Fig. XI.2(c), leading to the
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FIG. XI.3 Microscopic model for chemotaxis. The free enzyme (yellow) is in a gradient of substrate molecules
(purple), with concentration cs(R). The enzyme can bind one-on-one to a substrate molecule to form a complex
(red), with binding rate kon and unbinding rate koff , and also interacts with all other substrate molecules around
it through the non-specific potential φ(h).

corrections highlighted in Eq. (XI.14).

The above result is obtained in the longest time limit, as set out by the moment expansion technique.

Using a path integral description, it is possible to show that the diffusion coefficient of an enzyme at

short time scales is given by the average contribution only, and that the crossover to the long time

behaviour—that includes the fluctuation–induced reduction of the diffusion coefficient—happens at the

expected time scales (Illien et al., 2017a).

The above formulation lends itself naturally to a new mechanism contributing to enhanced diffusion

of catalytically active enzymes. Since the diffusion coefficient has a component that depends on fluc-

tuations, any process that modifies the fluctuations will change the diffusion coefficient. In particular,

substrate binding can generically supress elongation and orientation fluctuations of an enzyme, and

thereby reduce the negative fluctuation–induced correction in Eq. (XI.14), leading to an enhanced dif-

fusion as given by Eq. (XI.3). The Michaelis-Menten form of the substrate concentration dependence

originates from the probability of substrate binding in stationary state, and not from the catalytic rate

of reaction, which happens to have the same form [see Eq. (XI.2)], because it is also proportional to

the probability of substrate binding. Note that while this calculation was performed only using the

equilibrium components of the forces between the sub-units, the nonequilibrium forces that have been

dealt with for the stochastic swimming scenario can also be taken into consideration within this more

elaborate formalism.

The existence of multiple mechanisms highlights that it is perhaps misleading to think about enhanced

diffusion of catalytically active enzymes as one phenomenon with universal features.

B. Chemotaxis of Enzymes

In recent years, it has been observed experimentally that the non-equilibrium chemical activity of en-

zymes leads to intrinsically non-equilibrium behaviour and interactions already at the microscopic scale,

and in particular chemotaxis towards (Dey et al., 2014; Guha et al., 2017) and away (Jee et al., 2018)

from the substrate source. Similarly to the case of enhanced diffusion, it can be argued that several

mechanisms contribute to enzyme chemotaxis and that the different tendencies observed in the experi-

ments can be explained as a competition between these contributions (Agudo-Canalejo et al., 2018a,b).

In particular, phoresis tends to direct enzymes towards their substrates, due to the predominantly at-

tractive interaction between them, whereas enhanced diffusion tends to have the opposite effect as the

enzymes will evacuate the region with higher substrate concentration more quickly due to enhanced

diffusive activity.
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We can use a minimal model that takes into account the following ingredients: specific binding between

the substrate and the enzyme, nonspecific interactions such as electrostatic, steric and van den Waals

interactions, as well as hydrodynamics interactions; see Fig. XI.3. The setup the model, we start

from the full N -particle Fokker-Planck equation of the system of enzyme and substrate molecules and

integrate out the substrate degrees of freedom to arrive at the following effective one-particle description

for the free enzyme and complex probability distributions

∂tCe(R; t) = ∇R · [De∇RCe − ve(R)Ce]− konCeCs + koffCc (XI.15)

∂tCc(R; t) = ∇R · [Dc∇RCc − vc(R)Cc] + konCeCs − koffCc (XI.16)

where Cs(R) is the concentration of substrate molecules. Equations (XI.15–XI.16) capture the effects

of three important physical mechanisms. First, the free enzyme can turn into a complex and vice

versa through the binding and unbinding of a substrate molecule, with rates kon and koff . Second, the

free enzyme and complex diffuse with diffusion coefficients respectively given by De = kBTµ
ee and

Dc = kBTµ
cc. Finally, the combination of non-specific and hydrodynamic interactions between the free

enzyme or complex and the substrate molecules leads to a diffusiophoretic drift of the free enzyme and

complex with velocities respectively given by

ve(R) ≈ −kBT

η

[∫ ∞
0

dhh
(

1− e−φ
es(h)/kBT

)]
∇RCs ≡ −

kBT

η
λ2

e∇RCs (XI.17)

vc(R) ≈ −kBT

η

[∫ ∞
0

dhh
(

1− e−φ
cs(h)/kBT

)]
∇RCs ≡ −

kBT

η
λ2

c∇RCs (XI.18)

where η is the viscosity of the fluid. Equations (XI.17–XI.18) are approximate forms of the diffusio-

phoretic velocity valid for the typical case in which the range of the non-specific interactions is shorter

than the size of the enzyme or the complex. We have defined here the Derjaguin length λα as before.

Remember that, in our convention, λ2
α may be positive or negative, with positive (negative) values

corresponding to overall repulsive (attractive) interactions that lead to a depletion (an accumulation)

of substrate molecules in the proximity of the enzyme. Because enzyme–substrate interactions are gen-

erally attractive, we expect λ2
α < 0, implying that for typical enzymes the phoretic velocity is directed

towards higher concentrations of the substrate.

Equations (XI.15–XI.16) already contain all the ingredients necessary to describe enzyme–substrate

interactions. Nevertheless, in order to describe chemotaxis we are actually interested in the total con-

centration of enzyme, both free and bound, given by

Ctot
e (R; t) = Ce(R; t) + Cc(R; t) (XI.19)

which corresponds to what is measured in the experiments with fluorescently tagged enzymes (free

enzyme and complex cannot be distinguished). Furthermore, the typical timescale of diffusion and

phoretic drift is much longer than the typical timescale of binding and unbinding. We can therefore

assume that the enzyme is locally and instantaneously at binding equilibrium with the substrate, so

that at any position R we will have

konCe(R; t)Cs(R; t) ≈ koffCc(R; t) (XI.20)

at time t. Combining Eq. (XI.19) and Eq. (XI.20), we find the typical Michaelis-Menten kinetics for

the free enzyme and the complex

Ce =
K

K + Cs
Ctot

e and Cc =
Cs

K + Cs
Ctot

e (XI.21)

where we have defined the Michaelis constant K ≡ koff/kon.
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Adding together Equations (XI.15) and (XI.16), and using (XI.21), we finally obtain an expression for

the time evolution of the total enzyme concentration

∂tC
tot
e (R; t) = ∇R ·

{
D(R) · ∇RC

tot
e − [V ph(R) + V bi(R)]Ctot

e

}
(XI.22)

with the space-dependent diffusion coefficient

D(R) = De + (Dc −De)
Cs(R)

K + Cs(R)
, (XI.23)

a drift velocity arising from phoretic effects

V ph(R) = ve(R) + [vc(R)− ve(R)]
Cs(R)

K + Cs(R)
, (XI.24)

as well as a drift velocity arising from the changes in diffusion coefficient due to substrate binding and

unbinding

V bi(R) = −(Dc −De)∇R

(
Cs(R)

K + Cs(R)

)
= −∇RD(R). (XI.25)

The drift velocity arising from diffusiophoresis V ph(R) corresponds to an ‘average’ of the phoretic

velocities of the free enzyme and the complex. With increasing substrate concentration, a smooth

Michaelis-Menten-like crossover is observed between the velocity of the free enzyme ve and that of the

complex vc. In principle, this velocity may be directed towards or away from higher concentrations of

substrate, depending on the details of the non-specific interactions. Because enzyme–substrate interac-

tions are generally attractive, however, we expect that the typical phoretic velocity for enzymes will be

directed towards higher substrate concentrations. The drift velocity V bi(R) is a direct consequence of

the changes in the diffusion coefficient of the enzyme due to binding and unbinding of the substrate.

This drift velocity is directed towards higher concentrations of substrate in the case of inhibited dif-

fusion with Dc < De, and towards lower concentrations of substrate in the case of enhanced diffusion

with Dc > De. In the absence of phoresis with V ph(R) = 0, Equation (XI.22) can then be written

as ∂tC
tot
e (R; t) = ∇2

R[D(R)Ctot
e ], and we would thus expect Ctot

e (R) ∝ 1/D(R) in the steady state,

i.e. the enzyme tends to concentrate in regions where its diffusion is slowest. This type of behaviour

was recently reported experimentally in Ref. (Jee et al., 2018) for urease, in apparent conflict with older

results in the literature, Ref. (Sengupta et al., 2013), in which urease was observed to chemotax towards

higher concentrations of urea. The existence of two distinct mechanisms for chemotaxis, namely phore-

sis and binding-induced changes in diffusion as just described, may explain the seemingly contradictory

observations. It is interesting to note that chemotactic alignment can also contribute to the process of

net chemotactic drift as well as enhanced diffusion on time scales longer than the rotational diffusion

time (Adeleke-Larodo et al., 2019a).

XII. PHORESIS ON THE SLOW LANE: TRAIL-FOLLOWING BACTERIA

When bacteria live in the bulk, they use swimming motility via flagella, and search strategies like

run-and-tumble to provide for themselves, as single entities. The planktonic life of bacteria is lonely,

because random walks in 3D are terse. When bacteria find a surface and interact with it mechanically,

at some point they “decide” to settle on it. The decision making process is stochastic, and involves a

cross-correlation between cAMP signal and type-IV pili (TFP) mechanical activity, which lasts through

several generations of cell division (Lee et al., 2018). The settled bacteria lose their flagella and grow

pili, and start exploring the 2D surface using surface attachment motility: pili elongate and retract

through polymerization and depolymerization, and they stochastically attach to the surface and detach
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from it. On surfaces, bacteria live communal lives, because random walks in 2D are compact, which

implies that bacteria meet very often even if they do not signal each other.

In practice, however, bacteria do signal each other and use it to self-organize much more efficiently than

random walks can provide for them. They achieve this by leaving behind a metabolically expensive

polysaccharide trail. While this might appear to be an inefficient use of individual resources, the

communal lifestyle that follows from it benefits them immensely. This process belongs to the general

class of motility with chemical sensing, in the extreme limit where the chemicals do not diffuse. Here we

describe the detailed derivation of a set of stochastic equations of motion for bacteria that phoretically

interact via non-diffusing trails they leave behind themselves. The theoretical formulation is based on

a microscopic motility model that takes into account stochastic attachment and detachment of pili, as

well as friction coefficients and pili contraction forces that depend on the amount of polysaccharide

(Gelimson et al., 2016; Kranz et al., 2016).

A. Systematic Derivation of Stochastic Dynamical Equations

We consider a bacterium of length ` (Fig. XII.1). We will assume that each of theN pili located at one tip

(or at both tips) of a bacterium will attach to, and detach from, the surface and pull in a polysaccharide-

dependent way. The direction unit vectors of the pili ei, i = 1, . . . , N are assumed to originate from

the bacterial tip r0. One could consider variants of this model where the pili distribution is different. A

single pilus tip, located at r0+`pêi, will randomly attach to the surface with a polysaccharide-dependent

rate λ(ψi), detach with a rate µ(ψi) and pull in its direction with a force f(ψi) if it is attached to the

surface. Here, ψi is the polysaccharide concentration at the tip of pilus i, ψi = ψ(r0 + `pêi). For each

pilus i we define Θi = 1 if the pilus is attached and Θi = 0 if it is detached. Θi will have a mean

Θ̄ = 〈Θi〉 =
λ(ψ)

λ(ψ) + µ(ψ)
, (XII.1)

and a variance

σ2 = 〈(Θi − Θ̄)2〉 =
λ(ψ)µ(ψ)

[λ(ψ) + µ(ψ)]2
. (XII.2)

pili

n

r0

F

FIG. XII.1 Microscopic model: the bacterium has type-IV pili of length `p, which can attach to a surface and
pull the bacterium forward with a generically polysaccharide-dependent force. Originating at a bacterial pole r0,
the pili point in different directions êi, i = 1, . . . , N , such that the pili tips are located at the positions r0 + `pêi.
A pilus pulling force f(ψi)êi on the bacterial tip r0 is only generated if the pilus is attached to the surface
and in general the attachment and detachment rates λ(ψi) and µ(ψi) will be dependent on the polysaccharide
concentration ψi = ψ(r0 + `pêi) at the end of pilus i
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The total force exerted at the bacterial tip will then be

F =
∑
i

êif(ψi)Θi. (XII.3)

Using the form Θi = Θ̄ + δΘi, and the Taylor expansion ψi = ψ(r0 + `pêi) ≈ ψ(r0) + `p(∇ ψ|r0
· êi),

we obtain

F =
∑
i

êif(ψ)Θ̄(ψ) +
∑
i

êi`p(∇ψ · êi)∂ψ(fΘ̄) +
∑
i

êif(ψi)δΘi. (XII.4)

We can express the pili orientation vectors in terms of the bacterial body orientation n̂ and the orien-

tation n̂⊥ = êz × n̂ orthogonal to it as êi = cosϑin̂ + sinϑin⊥. It is reasonable to assume that the

pseudomonas bacteria mainly contributing to surface-mediated chemotaxis will have a pili distribution

that is approximately symmetrical with respect to the body orientation (if this was not the case the

bacterium would generate a torque in one preferred direction, rotate around itself and effectively stay

in one point). Therefore, we can neglect terms in the sum over the pili that are odd in sinϑi, like

〈sinϑi〉 = 1
N

∑
i sinϑi or 〈cosϑi sinϑi〉 = 1

N

∑
i cosϑi sinϑi. The force can then be written as

F = N〈cosϑi〉f(ψ)Θ̄(ψ)n̂+N〈cos2 ϑi〉`p∂ψ
[
f(ψ)Θ̄(ψ)

]
(∇ψ · n̂) n̂+ n̂

δF‖︷ ︸︸ ︷∑
i

cosϑif(ψi)δΘi

+N〈sin2 ϑi〉`p∂ψ
[
f(ψ)Θ̄(ψ)

]
(∇ψ · n̂⊥) n̂⊥ + n̂⊥

∑
i

sinϑif(ψi)δΘi︸ ︷︷ ︸
δF⊥

. (XII.5)

If the pili attachment events of two different pili are independent of each other we have 〈δΘiδΘj〉 =

σ2(ψ)δij . Moreover, we can calculate the auto-correlation of the attachment as 〈δΘi(t)δΘi(t
′)〉 =

σ2 e−(µ+λ)|t−t′| δij . If we focus on time scales that are longer than the average attachment/detachment

time, we can represent this auto-correlation as a delta function

〈δΘi(t)δΘi(t
′)〉 =

σ2(ψ)

[λ(ψ) + µ(ψ)]
δijδ(t− t′) =

λ(ψ)µ(ψ)

[λ(ψ) + µ(ψ)]3
δijδ(t− t′). (XII.6)

With this, we get the mean square fluctuations of the parallel force as〈
δF 2
‖
〉

= N〈cos2 ϑi〉f2(ψ)σ2(ψ) +O (∇ψ · `p) . (XII.7)

Analogously, for the mean square fluctuations of the perpendicular force we obtain〈
δF 2
⊥
〉

= N〈sin2 ϑi〉f2(ψ)σ2(ψ) +O (∇ψ · `p) . (XII.8)

The attachment/detachment of pili on the surface can be considered a set of N random events and in case

of N � 1 we can expect that the overall fluctuations in the force can be well approximated by a Gaussian

with a variance of N〈cos2 ϑi〉f2(ψ)σ2(ψ) in the direction n̂ and a variance of N〈sin2 ϑi〉f2(ψ)σ2(ψ) in

the direction n̂⊥.

The pili-generated force will propel the bacterium and also generate a torque. Therefore, we obtain the

following translational equation of motion

dr

dt
=

1

γ‖
F‖ +

1

γ⊥
F⊥ = v(ψ)n̂+A(ψ)(∇ψ · n̂⊥)n̂⊥ +B(ψ)(∇ψ · n̂)n̂+

√
2D‖ η

‖n̂+
√

2D⊥ η
⊥n̂⊥,

(XII.9)
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and the following rotational equation of motion

dn̂

dt
= ω × n̂ = − 1

γrot
n̂× τ = −χ(ψ)n̂× [n̂×∇ψ] +

√
2Dr(ψ) η⊥n̂⊥. (XII.10)

The parameters are known functions of the rates, but there are only two independent parameters

v(ψ) = N c1
f(ψ)

γ‖

λ(ψ)

λ(ψ) + µ(ψ)
, (XII.11)

Dr =
1

8
N`2(1− c2)

f2(ψ)

γ2
rot

λ(ψ)µ(ψ)

[λ(ψ) + µ(ψ)]3
. (XII.12)

(XII.13)

The rest of the parameters can be expressed in terms of v(ψ) and Dr(ψ) in the following way

D‖(ψ) =

[
4γ2

rotc2
`2γ2
‖(1− c2)

]
Dr(ψ), (XII.14)

D⊥(ψ) =

(
2γrot

γ⊥`

)2

Dr(ψ), (XII.15)

χ(ψ) =

[
γ‖``p(1− c2)

2γrotc1

]
∂ψv(ψ) + θ(0)∂ψDr(ψ), (XII.16)

A(ψ) =

[
`p(1− c2)γ‖

c1γ⊥

]
∂ψv(ψ) + θ(0)

(
2γrot

γ⊥`

)2

∂ψDr(ψ), (XII.17)

B(ψ) =

[
`pc2
c1

]
∂ψv(ψ) + θ(0)

[
4γ2

rotc2
`2γ2
‖(1− c2)

]
∂ψDr(ψ), (XII.18)

where c1 = 〈cosϑi〉 and c2 = 〈cos2 ϑi〉 are assumed to be polysaccharide independent.

The noise terms η‖, η⊥ are Gaussian noise components parallel and orthogonal to n̂ with 〈η‖/⊥〉 = 0,

〈η‖(t)η‖(t′)〉 = δ(t − t′), 〈η⊥(t)η⊥(t′)〉 = δ(t − t′), and 〈η‖(t)η⊥(t′)〉 = 0. Our formulation contains

multiplicative noise and therefore needs an additional interpretation rule as discussed in (Van Kampen,

1981): the Itô interpretation corresponds to θ(0) = 0 whereas θ(0) = 1/2 corresponds to Stratonovich.

B. Single-particle Dynamics

The microscopic derivation provides us with a powerful framework that can be used towards a deeper

understanding of the behaviour of trail-following bacteria. The following two aspects are particularly

interesting for consideration.

1. Dependence of the Parameters on the Chemical Concentration

We are interested to address generic questions about this system, such as the influence of the polysaccha-

ride on the speed of bacteria. From the expression for v(ψ) in Eq. (XII.11), we can see that the answer

to this question is not trivial. The expression for speed involves the force f(ψ) that is likely to increase

with ψ due to stronger pulling (although it does not necessarily need to change), the friction coefficient

γ(ψ) that is likely to increase with ψ due to the stickiness of the polysaccharide, the attachment rate

λ(ψ) that is likely to increase due to preferential attachment, and the detachment rate µ(ψ) that is likely

to decrease to preferential attachment. Given the combination with which these parameters appear in

the expression for speed in Eq. (XII.11), it is not straightforward to predict the overall trend, as there

are competing contributions.
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gradient-dependent force and no alignment

alignment, oscillatory trail-following

FIG. XII.2 Translational gradient sensing versus orientational gradient sensing: The perpendicular alignment
strategy of chemotaxis allows for an efficient trail-following mechanism via oscillatory trajectories.

By fitting single-particle trajectories from the experiment to Eqs. (XII.11)–(XII.18), it was possible

to deduce that v(ψ) ∝ f
γ‖

λ
λ+µ increases significantly with ψ, whereas Dr(ψ) ∝ f2

γ2
rot

λµ
[λ+µ]3 is relatively

insensitive to at the lowest order. While this information is not sufficient to help us extract all the

functions, it suggests that the observations are consistent with the following pattern: λ ≈ κ0 + κ1ψ,

µ ≈ κ0−κ1ψ, and f
γ ≈ constant (Gelimson et al., 2016; Kranz et al., 2016). This provides us with novel

insight into the behaviour of trail-following bacteria.

2. Perpendicular Alignment Trail-following Strategy

For trail-following bacteria, it is not clear how a good strategy for following an existing trail can be

devised using gradient sensing, in line with common search strategies of microorganisms. The reason is

that the main gradient in a trail is setup perpendicularly to the main axis (see Fig. XII.2). Therefore, a

conventional or “translational” gradient sensing will only ensure that the bacterium is attracted to the

centre of the trail cross section; to move along trail, it will need to rely on random fortuitous alignment

of the body that will give it the appropriate velocity along the trail via self-propulsion. Our model

reveals an alternative and more efficient strategy, via alignment along the gradient. This “orientational”

gradient sensing strategy ensures that the bacterium is always aligned perpendicularly to the trail

heading towards its centre. When crossing through the maximum at the centre, the alignment strategy

will make the bacterium turn, resulting in an oscillatory or zigzag trajectory along the trail. This

provides the microorganism with an efficient trail-following strategy without any need for a complex

feedback mechanism between motility and sensing. This remarkable scenario is a natural consequence

of the microscopic interactions that are incorporated in the model, even though it might appear to be

counter-intuitive at first.

C. Many-particle Dynamics

The above equations need to be solved self-consistently together with the equation that describes trail

deposition at rate k by the moving bacteria

∂tψ −����XXXXDp∇2ψ = k
∑
a

δ(r − ra(t)), (XII.19)
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where the second term can be ignored as for the polysaccharide trails Dp ≈ 0. Solving the above

equations for the many-body bacterial system provides a quantitative account of the process of early

biofilm nucleus formation that agrees well with experiments (Gelimson et al., 2016). In particular, it

unravels a hierarchical self-organization of the multi-cellular system at very low densities, which exhibits

a power law visit distribution of space, whose prediction from the theory is quantitatively matched with

the experimental observations without any fitting parameters for the many-body dynamics.

D. Chemotactic Localization Transition

An intriguing outcome of the above formulation for trail-following bacteria is the emergence of a local-

ization transition when a microorganism can interact with its own trail (Kranz et al., 2016). Let us

consider the trail excreted from a microorganism as characterized by the equation

∂tψ(r, t) = kδ2
R (r − r(t)) , (XII.20)

where δ2
R (r − bfr(t)) ≡ θ(R2 − r2)/πR2 is a “regularized delta function” that accounts for the finite

size R. Integrating this equation, we find for the trail profile at time t and position x as

ψ(x, t) = k

∫ t

0

dt′ δ2
R (x− r(t′)) =

k

πR2

∫ t

0

dt′ θ(R2 − |x− r(t′)|2). (XII.21)

The trail width 2R defines a microscopic time scale τ = R/v0, which gives the trail crossing time.

The orientation dynamics written in terms of the angle ϕ(t) defined via n = (cosϕ, sinϕ) is governed

by the following Langevin equation

∂tϕ(t) = χ∂⊥ψ(r(t), t) + ξ(t), (XII.22)

where ∂⊥ψ = n⊥(t) · ∇ψ(r(t), t), with the lateral unit vector given as n⊥ = (− sinϕ, cosϕ). Here ξ(t)

is a Gaussian random variable obeying 〈ξ(t)ξ(t′)〉 = 2D0
rδ(t − t′) and D0

r is the microscopic rotational

diffusion coefficient controlling the persistence time 1/D0
r .

The lateral gradient can be calculated by projecting the gradient of the trail profile onto the lateral unit

vector. From the definition of the trail field we have

∇xψ(x, t) = − 2k

πR2

∫ t

0

dt′[x− r(t′)]δ(R2 − |x− r(t′)|2), (XII.23)

and with a change of variable t′ → t− t′, we find

∂⊥ψ(r(t), t) = − 2k

πR2

∫ t

0

dt′[r(t)− r(t− t′)] · n⊥(t)δ(R2 − |r(t)− r(t− t′)|2). (XII.24)

The translational dynamical equation described by

dr(t)

dt
= v0n(t), (XII.25)

can be recursively integrated as

r(t− τ)− r(t) = v0

∫ t−τ

t

dun(u) = v0

∫ t−τ

t

du

[
n(t) +

∫ u

t

dw ṅ(w)

]
, (XII.26)
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FIG. XII.3 Phase diagram of the dynamics of the microorganism with trail-mediated self-interaction, the effective
translational diffusion coefficient D, and the effective rotational diffusion coefficient Dr, as functions of the
dimensionless turning frequency Ωτ that is a measure of the rate of trail deposition. A location transition is
observed at Ωτ = 2.

one finds [r(t− τ)− r(t)]2 = v2
0τ

2 + O(τ3) and

[r(t−τ)−r(t)] ·n⊥(t) = −v0

∫ τ

0

du

∫ u

0

dw {χêz · [n(t− w)×∇ψ(t− w)] + ξ(t− w)}n⊥(t−w) ·n⊥(t).

(XII.27)

An identical iteration shows n⊥(t− w) · n⊥(t) = 1 + O(w) and thus

[r(t− τ)− r(t)] · n⊥(t) = −v0

∫ τ

0

du

∫ u

0

dw [χ∂⊥ψ(t− w) + ξ(t− w)] + O(τ3). (XII.28)

Using the above two approximations in Eq. (XII.24) and performing one of the integrals yields a stochas-

tic integral equation

∂⊥ψ(t) =
Ω

τ

∫ τ

0

du (τ − u) [∂⊥ψ(t− u) + ξ(t− u)/χ] , (XII.29)

where Ω = kχτ/(πR3) is an effective turning rate, which increases for more intense trails (larger k) and

for more sensitive organisms (larger χ). The delay τ reflects the memory imparted by the trail. The

closed set of equations (XII.22), (XII.25), and (XII.29) constitute our effective dynamical description of

the system.

For the average gradient one finds 〈∂⊥ψ〉 ∼ eαt where the rate α is given implicitly as the solution of

λ(α) = 0 where

λ(α) = 1− Ωτ

ατ

[
1 +

1

ατ

(
e−ατ − 1

)]
. (XII.30)

The relevant dimensionless parameter controlling the behaviour of our system is Ωτ = kχ/(πRv2
0). For

Ωτ < 2, α < 0 and Eq. (XII.29) defines a random process with zero mean that leads to a stationary

dynamics which is time-translation invariant. For Ωτ > 2 one finds α > 0, i.e., the gradient (angular

velocity) diverges exponentially in time. This implies that the trajectory develops a spiral form and

converges to a localized point. We thus find that there is a maximum value of the product of trail

deposition rate and sensitivity, kχ, that allows steady-state motion. The phase diagram of the system

is shown in Fig. XII.3.
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FIG. XIII.1 The stochastic process of birth and death can compete with chemical interactions.

XIII. CHEMOTAXIS AND CELL DIVISION

Chemotaxis plays a crucial role in living systems even at time scales relevant to cell division. Examples

of such cases include cancer metastasis, the early stages of bacterial colony formation, wound healing,

and development of embryos. However, the underlying mechanisms of these important processes are not

fully understood due to the high complexity of these living many-body systems.

It is possible to shed some light on the dynamics of a system of chemically interacting cells, by taking

into account cellular growth and death (Fig. XIII.1). Using a stochastic field theoretical framework,

one can construct a dynamical equation for the density fluctuations of such a system as follows

∂tρ = Dc∇2ρ− θρ− ν1∇ ·
[
ρ∇
(

1

∇2

)
ρ

]
− ν2

2
ρ2 + η. (XIII.1)

In this equation, ν1 is the coupling constant for the term that represents chemotaxis and ν2 is the coupling

constant for the term that represents growth and death. One observes that the two seemingly unrelated

nonlinearities have the same strength in terms of power counting, but possess different symmetries: the

chemotactic term is conserved and the growth term is not (Gelimson and Golestanian, 2015). The noise

correlator in Fourier space

〈η(k, ω)η(k′, ω′)〉 = 2
[
D0 +D2k

2
]

(2π)d+1δ(k + k′)δ(ω + ω′), (XIII.2)

highlights conserved and non-conserved contributions to the noise strength as well. The large scale

behaviour of a population of cells that grow and interact through the concentration field of the chemicals

they secrete can be studied using the method of dynamical renormalization group (RG). The combination

of the effective long-range chemotactic interaction and lack of number conservation leads to a rich variety

of phase behaviour in the system, including anomalous diffusion and number fluctuations at the critical

point.

XIV. CONCLUDING REMARKS

A collection of interacting active colloids could serve as a promising model system to study collective

non-equilibrium dynamics, as both the single-particle activity and the interactions could be controlled

by construction. This approach will be directly relevant to studies of chemically active processes in

biological systems, from enzyme cluster formation to multi-cellular organization. Moreover, it helps solve

one of the challenges in making synthetic autonomous microscopic systems with non-trivial collective

dynamics, which is the injection of energy at the level of individual objects and the ability to engineer

the emergent properties of a collection of such objects.
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Abstract

Aqueous foams are complex fluids composed of gas bubbles tightly packed

in a surfactant solution. Even though they generally consist only of

Newtonian fluids, foam flow obeys nonlinear laws. This can result from

nonaffine deformations of the disordered bubble packing as well as from a

coupling between the surface flow in the surfactant monolayers and the bulk

liquid flow in the films, channels, and nodes. A similar coupling governs

the permeation of liquid through the bubble packing that is observed when

foams drain due to gravity. We review the experimental state of the art as

well as recent models that describe the interplay of the processes at multiple

length scales involved in foam drainage and rheology.
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1. INTRODUCTION

Aqueous foams are concentrated dispersions of gas bubbles in a surfactant solution. Their struc-

tures are organized over a large range of length scales, from the size of a bubble down to the

scale of the surfactant molecules adsorbed on liquid-gas interfaces. Surfactants confer specific

rheological properties to the interfaces that are coupled to the flow of the underlying bulk liquid.

Thus foam drainage and rheology result from interplay between processes over different length

scales and timescales. Many open questions about foam rheology were identified in an article in

this series by Kraynik (1988) 25 years ago. In this review, we present recent experimental and

theoretical progress in foam drainage and rheology, and we emphasize the link between micro-

and macroscales as an essential feature of their understanding.

2. FOAM STRUCTURE AND INTERFACES

2.1. Structure and Aging

Equilibrium foam structures have a minimal interfacial energy density for fixed bubble volumes.

This requirement determines the dependency of the foam structure on the liquid volume fraction

φl illustrated in Figure 1. For φl larger than the close-packing fraction φl,c , the dispersion is a

bubbly liquid. At φl = φl,c , the bubble packing jams, and a wet foam is formed in which the bubbles

are almost spheres. With decreasing φl , they progressively become polyhedra separated by thin

films. Close to the dry limit at which φl → 0, the equilibrium foam structure satisfies Plateau’s

rules: Films join three by three at equal angles of 120◦, and their junctions, called Plateau borders,

meet four by four at nodes, forming equal angles of 109.5◦ (Figure 1b,d,e) (Weaire & Hutzler

1999, Cantat et al. 2010).

Foam structures can be either disordered (Figure 1a,b) or ordered (Figure 1c,d). Monodis-

perse dry foams crystallize into the Kelvin [body-centered cubic (bcc)] structure, whereas wet

monodisperse foams have a face-centered cubic (fcc) or hexagonal close-packed (hcp) structure

(Weaire & Hutzler 1999, Cantat et al. 2010). These two structures have a close-packing fraction

φl, f c c = 0.26, smaller than that of monodisperse disordered foams φl,rc p = 0.36. Laplace’s law

1P = 2γ κ relates the mean curvature κ of the gas-liquid interfaces to the pressure difference

1P across them and the surface tension γ . In dry foams, the cross section of a Plateau border

is a concave triangle with curvature 1/RPb (Figure 1e), and 1P is called the capillary pressure,

Pc = γ /RPb . The cross-sectional area A = (
√

3 − π/2) R2
Pb of such a Plateau border increases

with φl and with the average bubble radius R. For φl ≤ 2%–3%, Plateau borders are slender and

RPb
∼= R

√
φl/c , where c is a geometrical constant (c ∼= 0.33 for the Kelvin structure) (Koehler

et al. 2000). For larger φl , borders and nodes are no longer well defined (Figure 1f ).

If foam is in contact with a liquid reservoir via a semipermeable membrane, it will suck the liquid

because this allows the bubbles to become more spherical and to decrease their interfacial energy.

The pressure that must be exerted to prevent such a flow is called the foam osmotic pressure,

5 (Princen 1986). At the jamming transition φl,c , bubbles are spherical, and the surface energy

density is minimal so that 5 = 0. The variations of 5 found in experiments and simulations over

the full range of liquid fractions illustrated in Figure 1g are described by the semiempirical law

5 = k
γ

R

(φl,c − φl )β√
φl

, (1)

with k ∼= 7.3, β ∼= 2, and φl,c = φl, f c c for an fcc structure (Höhler et al. 2008). The data for

disordered structures yield the rough estimates k ∼= 3.5, β ∼= 2.5, and φl,c = φl,rc p (Princen & Kiss

1987). Note that these parameter values may not be valid in the asymptotic limit φl → φl,c .
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ϕl = 5%

ϕl
ϕl,fcc ϕl,rcp

Figure 1

Disordered foams for the indicated liquid volume fractions: (a) foam at the jamming transition φl = φl,rc p

and (b) dry foam satisfying Plateau’s laws. Panel a courtesy of R. Lespiat. Ordered monodisperse foams for
the indicated liquid volume fractions: (c) fcc structure of a wet foam and (d ) bcc Kelvin structure of a dry
foam. The transition between fcc and Kelvin structures occurs for φl = 0.06. Panels c and d courtesy of Y.
Yip Cheung Sang. (e) Four Plateau borders with radius of curvature RPb joining at a node. The angles are
those predicted by Plateau’s rules for a dry equilibrium foam structure. ( f ) Structure of Kelvin foam
simulated with the Surface Evolver software for two liquid fractions. ( g) Variations of the osmotic pressure
5 normalized by γ /R with the liquid volume fraction φl , for foams and emulsions. In the limit of dry foams,

5 ∼= 0.6γ /(Rφ
1/2
l ). The green line corresponds to Equation 1. Data taken from Höhler et al. (2008). Panel g

adapted with permission from Höhler et al (2008). Copyright 2008 American Chemical Society.
(h) Schematic illustration of a Marangoni flow. As a surfactant monolayer is dilated, surface tension gradients
are created. Areas of high surface tension γ + contract at the expense of areas of low surface tension γ −. The
surface stress also induces flow in the liquid underneath.
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Figure 2

(a) Equilibrium liquid fraction profile of a disordered foam under gravity. The height h above the bottom of
the foam column is normalized by the characteristic length hc = γ /(ρg R). The inset illustrates the
corresponding liquid distribution in the Plateau border network. Photograph courtesy of H. Caps and D.
Terwagne, GRASP, University of Liège. (b) Free-drainage experiment. (Left) Time evolution of the vertical
liquid fraction profile in a foam (R = 90 µm) measured using electrical conductivity (time interval between
successive curves is 6 min). Data taken from Saint-Jalmes & Langevin (2002). At t = 0, the liquid fraction is
uniform (φl

∼= 0.15), but as time goes by, a drainage front propagates downward so that the foam dries up at
the top. At long times, the vertical profile reaches the equilibrium showed in panel a. (Right) Such a profile
observed by light transmission. Wet regions appear darker than dry ones. (c) Forced-drainage experiment.
(Left) A liquid front invades an initially dry foam column from the top, as observed by light transmission at
two successive times. The volumetric velocity of the perfused liquid is U ∼= 0.05 mm s−1. (Right)
Spatiotemporal picture of the experiment, allowing the front velocity to be deduced from the slope of the
frontier separating the dark region from the light region. (d ) Fluidized bubbly bed experiment. The height
of the bubbly bed is measured as a function of the liquid flow rate imposed from the top via a porous plate.
Under these conditions, liquid fractions up to 80% are obtained.

When a foam column containing a liquid of density ρ equilibrates under gravity, the liquid

drains until the variation of osmotic pressure and buoyancy over any vertical distance interval dz

reaches a balance d5 = ρ g[1 − φl (z)]dz, which determines the equilibrium liquid distribution

(Princen 1986). The resulting liquid volume fraction profile is presented in Figure 2a. In the dry

limit, the equilibrium condition in the presence of a pressure gradient ∇ P reduces to −∇ P ≃
∇(γ /RPb ).
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FOAMY COMPLEX FLUIDS

Substituting the usual Newtonian foaming liquids with polymer solutions, oil-in-water emulsions, or suspensions

of solid grains greatly modifies foam drainage and rheology. Non-Newtonian interstitial flow can be accounted for

in drainage theory (Safouane et al. 2006), but models describing the flow of homogeneous foaming liquids are not

applicable to suspensions of particles, oil droplets, or aggregates whose size is comparable to the channel diameters

(Koczo et al. 1992, Britan et al. 2009, Carn et al. 2009, Guignot et al. 2010, Louvet et al. 2010, Rouyer et al. 2011).

Foams laden with a small amount of noncolloidal particles exhibit strongly enhanced viscoelasticity (Cohen-Addad

et al. 2007). This effect can be understood in terms of capillary attraction between the particles, leading to a rigidity

percolation phenomenon. Concentrated colloidal suspensions can stop drainage owing to their yield stress, and

such foams are therefore very stable (Guillermic et al. 2009, Salonen et al. 2012). However, when these aerated

yield-stress fluids are sheared, the interstitial flow is restored, and the drainage velocity is then controlled by the

applied shear rate (Turner et al. 1999, Goyon et al. 2010). Remarkably, hydrophobic colloidal particles can stabilize

foams in the absence of surfactant molecules, by adsorbing at the interfaces (Aveyard et al. 2003, Binks & Murakami

2006, Cervantes-Martinez et al. 2008). The drainage and rheological properties of these foams have hardly been

explored.

Because of their large interfacial energy, liquid foams are intrinsically unstable. They evolve

via three coupled processes: Coalescence results from the rupture of films between bubbles. It

can be avoided by using large surfactant concentrations, the case we consider in this review. In

addition, foams age because of drainage, as described in detail in Section 3. The third aging process

results from Laplace pressure differences between neighboring bubbles, which drive diffusive gas

exchange between them. As the foam ages (i.e., as the time elapsed since production increases),

small bubbles shrink to zero size, and the average bubble size grows. This coarsening occurs at a rate

that increases with the gas solubility, the diffusion speed in the liquid, and the gas volume fraction.

Coarsening is accompanied by intermittent bubble rearrangements that locally relax interfacial

energy. The rate of these events decreases as the foam ages (Durian et al. 1991, Cohen-Addad

& Höhler 2001). Recent work has shown that drainage, coarsening, and coalescence, which need

to be suppressed in many applications, can be inhibited by the use of complex fluids as foaming

liquids (see the sidebar, Foamy Complex Fluids).

2.2. Interfacial Rheology

Surfactant molecules spontaneously adsorb on liquid-gas interfaces and decrease their surface

tension γ . A liquid-gas interface with adsorbed surfactants does not behave as a free surface.

Dilatation creates gradients of surfactant concentration (Figure 1h), leading in turn to surface

tension gradients that pull on the interface to reestablish the equilibrium surfactant concentration.

The gradient of γ balances with bulk viscous stress at the surface. This induces an entrainment

of the liquid beneath called the Marangoni effect. Surface tension gradients not only relax via

surface transport of surfactants, they also fade away owing to exchanges between the bulk and

the interface. The surface resistance against deformation can be so strong that it behaves as a

deformable, but rigid incompressible interface. Conversely, significant surface flow under applied

stress indicates interfacial mobility (Levich 1962).

The rheological behavior of the interface is described by the surface stress tensor related to the

surface deformation by a constitutive law. For liquid-like interfaces with Newtonian behavior, the

Boussinesq-Scriven law relates stress to the surface rate of deformation, depending on the surface
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LOH: lauryl alcohol

dilatational viscosity, µd , and surface shear viscosity, µs (Edwards et al. 1991, Sagis 2011). For

elastic interfaces, a generalized Hooke’s law with surface dilatational elastic modulus E and surface

shear modulus Gs describes the relation between stress and surface deformation.

The surface dilatational modulus is defined as E = A(d γ /d A), where A is the surface area.

It describes the resistance of the interface against surface tension gradients or homogeneous

dilatation. The surface dilatational viscosity affects the rate at which these gradients vanish owing

to intrinsic surface friction or to surfactant diffusion/adsorption from the bulk (Lucassen-Reynders

1981, Ivanov et al. 2005). If the surface is dilated with a frequency f, its response is described by a

complex surface dilatational modulus E∗( f ) = E ′( f )+ i E ′′( f ). In the limit of high frequency, the

interface behaves as an insoluble monolayer, E ′ → E∞ the limiting elasticity, and E ′′ = 2π f µd

is reduced to the small intrinsic viscous contribution to µd (Ivanov et al. 2005). In the zero

frequency limit, surfactant exchanges between the bulk and surface have time to occur, and the

interface does not resist dilation: E ′ → 0 and E ′′ → 0. At intermediate frequency, the interface is

viscoelastic.

The surface rigidity/mobility strongly depends on the surfactant composition. Surfactants of

low solubility such as lauryl alcohol (LOH), fatty acids, and some proteins are known to increase

considerably both the shear and dilatational moduli and viscosities, enhancing the surface rigidity

(e.g., see Sagis 2011). When foam flows, the interfaces are sheared and dilated. However, because

in general µd ≫ µs and Ed ≫ Gs, the coupling between bulk rheological properties and interfacial

viscoelasticity tends to be dominated by the dilatational surface properties. In contrast, as liquid

flows between the bubbles during drainage, the interfaces are essentially sheared, and the surface

shear viscosity µs generally dominates the surface stress.

3. FLOW IN FOAMS

3.1. Experimental Investigation of Foam Drainage

Free drainage is the spontaneous evolution of foam liquid fraction due to gravity, from an initial

state toward the equilibrium state described in Section 2.1. The free-drainage experiment probes

liquid flow in foams, by analyzing the volume of liquid drained at the bottom of a foam column,

by following the temporal evolution of the vertical liquid fraction profile (Koehler et al. 2000,

Carrier et al. 2002, Saint-Jalmes & Langevin 2002) (Figure 2b), or by measuring bubble veloc-

ities at the column wall (Maurdev et al. 2006). To interpret such data quantitatively, one must

carefully consider the initial liquid fraction profile (Saint-Jalmes et al. 2000) and bubble coarsening

(Hilgenfeldt et al. 2001) as they have a significant influence on the drainage.

Miles et al. (1945) have studied another interesting drainage configuration in which liquid is

continuously introduced at the top of the foam column. This procedure yields a steady-state flow

in which the amount of liquid held in the foam is determined by stopping the liquid flow and

draining the foam column. In the forced-drainage variant experiment, the foam column is left

to drain before liquid is perfused at a constant flow rate Q (Weaire et al. 1993). A region of wet

foam expands downward with a front velocity u f ront (Figure 2c). The average vertical interstitial

liquid velocity above the front is the same as that of the front, and the fraction of liquid flowing

through the perfused foam is simply given by φl
∼= U/u f ront , where U = Q/S, and S is the

column cross-sectional area. In contrast to free drainage, flow conditions are the same throughout

the wet region, resulting in a constant liquid fraction whose value is set by the balance between

gravity and viscous drag. The foam permeability thus reads K = µ U/(ρg), with µ the bulk shear

liquid viscosity, so that the forced-drainage experiment provides a simple tool to determine K (φl ).

However, for φl ≥ 0.1 − 0.2, the quantitative analysis of the front become more difficult because
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SDS: sodium dodecyl
sulfate

of gas compressibility (Koehler 2012), inertia effects (Stevenson & Li 2010), or internal convective

motions (Hutzler et al. 1998). Recently, a fluidized bubbly bed experiment (Rouyer et al. 2010)

has been used to extend the study of K (φl ) to bubbly liquids (Figure 2d).

3.2. Liquid Flow Through Plateau Borders, Nodes, and Films

Schematically, liquid drainage through a bubble assembly can be considered as flow through a

collection of channels (Plateau borders) and nodes (their junctions). The Reynolds number based

on the typical size of a channel (100 µm) and the average channel liquid velocity ū (1 mm s−1) is

Re = ρRPb ū/µ ∼= 0.01–1. For these small Re, the velocity field u is expected to obey the Stokes

equation. Note that for large bubbles (several millimeters) at liquid fraction φl > 0.1, inertia

effects are expected (Stevenson & Li 2010).

Several models are proposed to capture the hydraulic behavior of Plateau borders. For Hagen-

Poiseuille flow driven by a pressure gradient ∇ P in an infinitely long solid pipe of cross-sectional

area A, the dimensionless channel permeability is

kPb = µ ū/(A∇ P ). (2)

For a Plateau border, A is equal to (
√

3−π/2) R2
Pb and the dimensionless permeability kPb

∼= 0.020

is calculated (Nguyen 2002, Koehler et al. 2004a). The influence of interfacial mobility has been

considered in pioneering work by Leonard & Lemlich (1965a) by balancing the bulk viscous stress

with the surface shear viscous stress at the boundary: µ (n ·∇u) = µs ∇2
s u, where n is the unit vector

normal to the channel surface and ∇s is the surface gradient. At the three Plateau border corners,

the interfaces are assumed to be pinned (Figure 3a). The dimensionless Boussinesq number

characterizing the influence of the surface on the flow is

Bo =
µs

µRPb

. (3)

Numerical as well as approximate analytical solutions of the Stokes equation with these boundary

conditions provide values for kPb (Bo ) (Nguyen 2002, Koehler et al. 2004a). Bo ≫ 1 corresponds to

rigid interface behavior with kPb = 0.02 as above, but as Bo is decreased, kPb increases significantly

owing to the surface shear flow. The length scale RPb Bo measures the region of influence of

the pinned corners, as shown in Figure 3b. For small Bo, the interface is entrained by the bulk

flow, except in the corner regions, so that the flow is essentially plug-like, and the Plateau border

permeability increases tenfold. Numerical studies have evidenced the significant influence on kPb

of the geometry of the corners, accounting for a finite film thickness (Koehler et al. 2004a) or a

finite contact angle (Rouyer et al. 2008).

Evidence for the impact of interfacial mobility has been provided by microparticle-tracking

experiments using confocal microscopy in dry foams (Koehler et al. 2002, 2004b), as illustrated in

Figure 3c. The axial velocity profile measured across a Plateau border is parabolic with boundaries

flowing at a velocity that is about half the maximum velocity for sodium dodecyl sulfate (SDS)

solutions (Figure 3d). The same experiment performed with a solution of bovine serum albumin

revealed a vanishing velocity at the boundary, as expected for large Bo (Koehler et al. 2002). Other

experiments have been developed to investigate liquid flow in a single Plateau border (Koczo &

Racz 1987, Pitois et al. 2005b). Inspired by microfluidic experiments, the Plateau border apparatus

(Pitois et al. 2005b) delivers controlled flow rates through a single vertical Plateau border of a few

millimeters in length, while the driving pressure gradient and the channel cross-sectional area are

measured. The channel permeability is deduced using Equation 2, and the corresponding Bo is

determined from the theoretical curve kPb (Bo ) (Figure 3b). A value of Bo ∼= 0.1 is found for SDS

and tetradecyltrimethylammonium bromide (TTAB) solutions (Figure 3e), corresponding to an
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TTAB:
tetradecyltrimethyl-
ammonium bromide

extremely low surface shear viscosity µs
∼= 2 10−8 kg s−1. In contrast, Bo ∼= 1 if LOH is added

in sufficient amount. This increase of the surface shear viscosity is indeed expected because of

the compact structure formed by LOH molecules solubilized in TTAB or SDS monolayers (Lu

et al. 2000). Even though this model is globally consistent in terms of Bo, several features are not

captured. In fact, Bo seems to be approximately constant when RPb changes (Figure 3e) or when

the bulk viscosity is increased by the addition of glycerol (Pitois et al. 2005a). These effects are
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observed in interstitial liquid flows through foams, but they are absent in the related problem of

falling rivulets between solid plates (Drenckhan et al. 2007).

Interstitial liquid flow induces surfactant concentration gradients at the channel surfaces close

to their junctions (see Figure 4a) (Pitois et al. 2009b). The effects of Marangoni stresses are in-

deed observed in foam drainage, as illustrated in Figure 4e (Leonard & Lemlich 1965b, Carrier

et al. 2002, Pitois et al. 2005b). To model the balance between Marangoni stresses at the channel

surfaces and viscous stresses from the bulk, Durand & Langevin (2002) introduced the surface

elasticity E∞ (Durand & Langevin 2002). However, this model predicts a significant decrease

of the channel permeability with E∞ which is incompatible with the values kPb measured for

foams with mobile interfaces. Recently, it has been suggested that Marangoni stresses could be

partially relaxed through surfactant recirculation (Pitois et al. 2009b). Schematically, surfactants

are entrained by bulk flow along the channel surface, inducing a surface tension gradient along the

flow direction. This drives a Marangoni counterflow in the thin channel/film transitional areas

(Figure 4b–d). Globally, the permeability kPb is predicted to decrease with increasing surface

elasticity and surface shear viscosity, in qualitative agreement with the data (Pitois et al. 2009b).

Moreover, Marangoni flows induce the films to swell up to several micrometers, providing new

paths for the liquid (Carrier et al. 2002). A numerical calculation shows that the films’ contribution

becomes substantial if their thickness h satisfies the relation h/R ≥ φl (Koehler et al. 2004a). How-

ever, the quantitative contribution of the swollen films to the drainage remains to be elucidated.

Flow in a node is more complex than in a single Plateau border because of the multiple con-

nections with upstream and downstream channels. Few experimental and theoretical works have

been devoted to its study. Particle-tracking experiments have shown streamlines, highlighting

the laminar character of the flow and the lack of mixing in the nodes (Koehler et al. 2004b).

Pressure-drop, 1P , measurements have been performed (Pitois et al. 2008) in the configuration

in which the flow from one vertical upstream Plateau border (with flow rate q) exits via three

downstream Plateau borders (Figure 3f ). Similar to foam channels, the results show that the

flow in a node is significantly influenced by the surfactants used (Pitois et al. 2008). The measured

dimensionless hydraulic resistance of the node, R̃n = 1/kn = (R3
Pb/µ) (1P/q ), ranges from 150

for TTAB solutions to 1,200 for TTAB/LOH mixtures (Figure 3g). The value R̃n for a TTAB

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Figure 3

Liquid flow in a Plateau border. (a) Surface plot illustrating the liquid velocity field in an infinitely long
Plateau border of radius RPb . As suggested by the arrows, the channel surface is entrained by the bulk flow
except at the three corners at which the channel joins the foam films. Panel a courtesy of F. Rouyer.
(b) Dependence of the dimensionless channel permeability kPb on Boussinesq number (Equations 2 and 3).
In the limit of large Bo, the interface provides rigid boundary conditions and kPb = 0.02. As Bo diminishes,
kPb increases significantly owing to the surface shear flow. This evolution is illustrated by the three surface
plots for Bo = 0.1, 1, and 10. Panel b courtesy of F. Rouyer. (c,d ) Particle-tracking experiment in an SDS
foam perfused with a suspension of 1-µm latex microspheres (Koehler et al. 2004b). Monitoring these
tracers in a Plateau border using confocal microscopy reveals flow streamlines. The analysis of the particle
positions as a function of time gives the axial velocity profile of the flow. Interfacial mobility is evidenced by
the finite velocity measured at the channel’s boundaries. (e) Influence of interfacial mobility on liquid flow
through a single Plateau border, as probed with the Plateau border apparatus (Pitois et al. 2005b). The
Boussinesq number is determined for several Plateau border sizes and liquid flow rates, for TTAB (blue) and
TTAB/LOH (red ) solutions. Solid lines represent Equation 3, assuming a constant value for µs. Data taken
from Pitois et al. (2005a). ( f ) Single foam node formed at the junction of four Plateau borders (Pitois et al.
2008). ( g) Comparison of values for the dimensionless resistance parameter R̃n of a foam node published in
the literature. Pitois et al. (2008) and Cox et al. (2001) correspond to studies at the microscopic level. The
other references correspond to macroscopic studies.
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Figure 4

(a) Coupled bulk and surface flows close to a node. The injected flow rate q is distributed over three output channels (blue arrows). The
surface flows at upstream and downstream channels create an excess ( plus signs) or a lack (minus signs) of surfactant molecules compared
to the equilibrium surface concentration. Marangoni counterflows in the channel/film transitional regions (red arrows) act against this
imbalance of surface concentrations. (b) Surfactant flow at a Plateau border surface. Surfactants are entrained by bulk flow in the central
region of the channel surface, whereas Marangoni counterflows near the corners of the channel cross section entrain surfactant
molecules in the opposite direction. This recirculation mechanism reduces the channel permeability kPb . (c,d ) The channel/film
transition region as observed in the Plateau border apparatus (Pitois et al. 2005b). Thin spots driven by Marangoni counterflow are
observed (dark areas in the film) with velocity proportional to the average liquid velocity in the channel. (e) A vertical film in a foam
during a perfusion with a solution of sodium dodecyl benzene sulfonate (Carrier et al. 2002). The colored pattern reveals Marangoni
counterflows close to the Plateau borders.

solution compares well with that simulated for a foam node with free (totally mobile) interfaces

(Cox et al. 2001).

3.3. Multiscale Modeling of Foam Drainage

Foam drainage is modeled as flow through a porous medium composed of Plateau borders and

nodes. The interstitial liquid flows under the combined actions of the hydrostatic and capillary

pressure gradients. At a scale corresponding to many bubbles, the liquid flow rate per unit area is

described by Darcy’s law (Koehler et al. 2000), U = K (ρ g −∇ P )/µ. One of the main differences
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between foams and solid porous media is that the foam capillary structure adjusts to the interstitial

liquid flow according to Laplace’s law. As presented in Section 2.1, the pressure gradient can

be expressed as −∇ P ∼= ∇(γ /RPb ) in the limit of dry foams. Combining these relations, the

continuity equation and the Plateau border geometry described in Section 2.1 give the foam-

drainage equation, which describes the dynamics of the foam liquid fraction (Goldfarb et al. 1988,

Verbist & Weaire 1994):

dφl

dt
+ ∇ ·

(

K ρ

µ
g

)

− ∇ ·
(

γ K

2 c R µ
φ

−3/2
l ∇φl

)

= 0. (4)

For free-drainage boundary conditions, it predicts the experimentally observed power-law de-

crease of φl with time at a fixed position in space (Koehler et al. 1998, Koehler et al. 2000).

Moreover, Equation 4 has a solitary wave solution observed in the case of the forced-drainage ex-

periment (Figure 2c) (Weaire et al. 1997). Capillary forces become important in the front region

and set its width: w f ront ≈ 2.5 × 10−3φ
−1/2
l (Koehler et al. 2000).

Quantitative predictions require an expression of the foam permeability K. As a starting point,

we consider the channel-dominated regime (Verbist et al. 1996) in which dissipation mainly

occurs in the Plateau borders, modeled as a network of randomly oriented channels, a problem

first addressed by Saffman (1959). Adapted to foams, the permeability reads Kc hannels = AkPb φl/3.

In the limit of rigid interfaces, kPb is equal to 0.02 and Kc hannels
∼= 3.2 × 10−3 R2 φ2

l . Combining

this expression of Kc hannels with Equation 4 gives the foam-drainage equation as first derived

by Goldfarb et al. (1988). This model is useful for dry foams stabilized by proteins or specific

surfactant mixtures with high surface shear viscosity (Saint-Jalmes & Langevin 2002). However,

in many cases, the observed foam permeability is larger than predicted, and one has to consider

the effect of interfacial mobility on kPb (Section 3.2). Moreover, the observed scaling for foam

permeability is closer to φ
3/2

l than to φ2
l , as shown in Figure 5.

To explain the observed K ∝ φ
3/2

l power law, Koehler et al. (1999) proposed the so-called

node-dominated regime in which dissipation occurs solely in the nodes, whose volume fraction

in the channel network vnodes /(vnodes + vc hannels ) is proportional to φ
1/2

l for a dry foam. Balancing

the viscous damping force (per unit liquid volume) inside the nodes of the network φ
1/2

l (µ ū/R2
Pb )

by the pressure gradient, expressed as µ(ūφl )/Knodes using Darcy’s law, one obtains the foam

permeability Knodes ∼ R2 φ
3/2
l . However, the assumed absence of dissipation in the Plateau borders

is hard to reconcile with the known values of µs. More general models in which the permeabilities of

Plateau borders and nodes are associated (i.e., 1/K = 1/Kc hannels +1/Knodes ) are generally preferred

(Koehler et al. 2000, Carrier et al. 2002, Neethling et al. 2002, Saint-Jalmes et al. 2004, Lorenceau

et al. 2009). By setting the respective dissipation parameters for the channels and the nodes, these

models allow any power-law exponent in the range 3/2–2 to be predicted (Figure 5b,c). However,

ad hoc assumptions are generally made to fit experimental data: a vanishing dissipation in the

Plateau borders (Koehler et al. 2000), a constant value for kPb (Neethling et al. 2002) or a constant

Bo number (Lorenceau et al. 2009), an additional resistance due to the foam films (Carrier et al.

2002), or a complex evolution for the node resistance as a function of Bo (Saint-Jalmes et al. 2004).

The fitted values for kPb (or µs) and R̃n are scattered over a wide range, as shown in Figure 3g,

which originates from both the incorrect description of the flow at the microscopic level and the

intrinsic difficulty of capturing the foam geometry beyond the dry limit (Lorenceau et al. 2009,

Cantat et al. 2010, Koehler 2012). As an alternative to these geometrical models, an approach based

on the Carman-Kozeny equation has been applied to foams (Pitois et al. 2009a). The starting point

is the specific surface area of the interstitial network of the bubble packing calculated by surface

energy minimization (Höhler et al. 2008). It has been shown that for foams with rigid interfaces, the

Carman-Kozeny approach reproduces well the channel-dominated regime at low liquid fractions

www.annualreviews.org • Flow in Foams and Flowing Foams 251

A
n
n
u
. 
R

ev
. 
F

lu
id

 M
ec

h
. 
2
0
1
3
.4

5
:2

4
1
-2

6
7
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.a
n
n
u
al

re
v
ie

w
s.

o
rg

b
y
 1

3
7
.1

2
1
.1

.2
6
 o

n
 0

1
/1

5
/1

3
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

.



3/2

2

K
 /

 4
R

2

K
 /

 4
R

2
K

 /
 4

R
2

10–3

10–3 10–2 10–1

10–3 10–2 10–1

100

10–4

10–4

10–5

10–6

10–7

10–4

10–5

10–6

10–7

10–8

10–5

10–6

10–7

10–8

10–9

Liquid fraction

TTAB

TTAB/LOH

10–3 10–2 10–1

Liquid fraction

Liquid fraction

a b

c

Sodium dodecyl benzene sulfonate
(SDBS) (Carrier et al. 2002) SDS/glycerol (Stoyanov et al. 1998)

TTAB (Lorenceau et al. 2009)

TTAB/LOH (Lorenceau et al. 2009)

Casein or SDS/LOH (Saint-Jalmes et al.
2004, 2007; Saint-Jalmes 2006)

SDS (Saint-Jalmes 2006)

SDS/LOH (Durand et al. 1999)

SDS (Durand et al. 1999)

SDS (Saint-Jalmes et al. 2004)

TTAB (Neethling et al. 2002)

SDS (Neethling et al. 2002)

Fairy liquid (Weaire et al. 1993)

Dawn (Koehler et al. 1999)

SDS (Koehler et al. 2000)

R = 0.55 mm

R = 2.15 mm

R = 0.5 mm

R = 1.0 mm

Figure 5

Foam permeability scaled by the square of the bubble diameter as a function of the foam liquid fraction. (a) The symbols correspond to
experimental data available in the literature for different foaming solutions. The two lines show the slopes of power laws predicted by
the node-dominated (3/2) and the channel-dominated (2) models (Section 3.3). (b) TTAB solution. Experimental data are shown for
(red circles) R = 0.55 mm and (blue squares) R = 2.15 mm. The dashed line represents the node-dominated model with R̃n = 2,000, and
the red line and the blue line the channel/node model with R̃n = 400 and µs = 5 × 10−8 kg s−1 for R = 0.55 mm and R = 2.15 mm,
respectively. Panel b adapted from Lorenceau et al. (2009) and Cantat et al. (2010). (c) TTAB/LOH solution. Experimental data for (red
circles) R = 0.5 mm and (blue squares) R = 1.0 mm. The dashed line represents the channel-dominated model, the black line the
Carman-Kozeny model, and the red and the blue line the channel/node model with R̃n = 800 and µs = 5 × 10−7 kg s−1 for R =
0.5 mm and R = 1.0 mm, respectively. Panel c adapted from Lorenceau et al. (2009) and Cantat et al. (2010).

(φl< 2%–3%) and agrees with experimental data up to the wet limit (Rouyer et al. 2010). However,

this approach cannot be applied to foams with mobile interfaces.

4. FLOWING FOAMS

4.1. Solid-Like or Liquid-Like Mechanical Behavior

Despite being composed only of fluids, aqueous foams exhibit either solid-like or liquid-like

mechanical behavior, depending on the applied stress and their liquid content φl (Figure 6a). Here

we consider rheology decoupled from drainage, which means in practice that measurements are
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(a) Solid-like or liquid-like mechanical behaviors of foam, depending on the liquid volume fraction and applied shear stress. φl,c denotes
the liquid volume fraction at the jamming transition. (b) Evolution of the shear stress, the first N1 and second N2 normal stress
differences with the applied shear strain, for a disordered monodisperse 3D dry foam, simulated under quasi-static conditions using the
Surface Evolver software. Stresses are normalized by γ /V 1/3, where V is the bubble volume. For strains below the yield strain εy, the
response is linear, σ = Go ε with Go

∼= 0.5γ /R (Kraynik & Reinelt 2004). (Inset) The foam structure for ε ∼= 1.4. Beyond εy, the shear
stress saturates to the yield stress σ y, and the foam undergoes a plastic flow. The intermittent jumps of the stresses result from T1
events that would be averaged out in a sample containing a larger number of bubbles. Data taken from Kraynik & Reinelt (2004),
courtesy of A. Kraynik. (c) Four structures illustrating how a quasi-statically increasing strain induces a T1 event in a 2D foam (Princen
1983). Some films are lengthened while others are shortened, leading to the formation of a mechanically unstable fourfold junction. At
this point, the stress reaches its maximum value. Then bubbles rearrange and relax into a new equilibrium configuration of modified
topology, as illustrated by the bubbles highlighted in blue. (d ) T1 rearrangement in a dry 3D cluster of four bubbles (1–4) induced by a
shear strain (in the direction of the arrows in the first image) applied so slowly that the duration of the relaxation following the
topological switch is independent of the strain rate. Note that the transition from 1 to 4 corresponds to the topological change shown in
the last two images of panel c. The foaming solution is SLES-CAPB-LOH in water. The time interval between images 1–4 is 1.4 s.
Data taken from Biance et al. (2009), courtesy of A.-L. Biance.

performed on a timescale shorter than the drainage time evaluated as H /u f ront ≈ µ φl H /(Kρg),

where H is the sample height (Section 3.1). Under a small shear, a foam behaves as a solid.

Its elasticity arises from the interfacial energy density (≈γ /R) that increases as the bubbles are

deformed. The static elastic shear modulus Go scales as γ /R and vanishes at the jamming transition.

For disordered polydisperse foams of mean bubble radius R, Go is expressed as

Go
∼=

γ

R
(1 − φl )(φl,rc p − φl ) (5)

with a dimensionless prefactor of order 1 depending on polydispersity (Höhler & Cohen-Addad

2005). The maximum stress that a foam can sustain without flowing defines the static yield stress

σ y, and the corresponding strain is the yield strain εy. Both quantities are maximum for a dry

foam and tend toward zero at φl,c where the foam loses its elasticity. For disordered polydisperse

foams, they are given by the empirical laws σy = a1
γ

R
(φl,rc p − φl )2 and εy = a2(φl,rc p − φl ) with the
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dimensionless prefactors a1
∼= 1 − 2 and a2

∼= 0.2 − 0.5 (Saint-Jalmes & Durian 1999; Rouyer

et al. 2003, 2005; Höhler & Cohen-Addad 2005; Marze et al. 2009).

When a foam yields, plastic flow sets in owing to local bubble rearrangements that relax stress

(Kraynik & Reinelt 2004, Cantat & Pitois 2006) as illustrated in Figure 6b. In a dry foam,

these topological changes are called T1 events (Figure 6c). At small applied strain rates, bubbles

rearrange intermittently and undergo strongly nonaffine motions, whereas for strain rates high

enough for rearrangements to overlap in time and space, the flow is more laminar (Gopal &

Durian 1999, Sexton et al. 2011). At the macroscopic scale, a foam behaves as a shear-thinning

fluid whose relation between shear stress σ (σ > σ y) and strain rate ε̇ is described by the Herschel-

Bulkley phenomenological law:

σ = σy + kc ε̇
n. (6)

The power-law exponent n < 1 depends on the interfacial rigidity. The consistency kc writes di-

mensionally kc ≈ σyτ
n, where τ is a characteristic time related to the duration of bubble rearrange-

ments (Gopal & Durian 1999). It allows Equation 6 to be expressed in terms of a dimensionless

shear rate τ ε̇ that measures the ratio of viscous and surface tension effects.

Foam flow behavior depends on the disorder of the structure and on the dynamics at the bubble

scale, encompassing the dilatational interfacial rheology that determines the boundary conditions

of flow in films and Plateau borders. In addition, slow flows are coupled to aging via coarsening-

induced bubble rearrangements. In the following, we review how these processes and couplings

come into play in shear start-up, steady flow, creep flow, and viscoelastic relaxations of foams.

4.2. Bubble Rearrangement Dynamics

Bubble rearrangements in which the packing intermittently relaxes into a configuration of lower

surface energy can be induced either by the coarsening process or by an applied shear strain. The

dynamics of strain-induced rearrangement have been studied in dry two-dimensional (2D) Hele-

Shaw foams (Durand & Stone 2006), in soap films held on wire frames (Hutzler et al. 2008), and in

dry 3D bubble clusters (Biance et al. 2009). In these cases, the relaxation triggered by quasi-static

shear results from an unstable fourfold junction that evolves toward a new equilibrium structure

with two threefold junctions (Figure 6d). It is driven by the surface tension pulling on the new

film and is hindered by viscous friction due to the bulk liquid viscosity µ or to the dilatational

surface viscosity µd . Because the film thickness h is generally so small that the Boussinesq number

µd/(µh) ≫ 1, surface dissipation dominates. The balance between surface friction and surface

tension yields the relaxation time T ∼= µd /γ , with a prefactor of order 1 that is indeed observed

experimentally. Typically, we have γ ∼= 30 mN m−1 and µd
∼= 10−4–10−1 kg s−1, depending

on the rigidity of the interfaces. Thus T can vary by approximately three orders of magnitude

from a few milliseconds up to a few seconds (Biance et al. 2009). In this simple model, gradients

of surfactant surface concentration are assumed to equilibrate much faster than the relaxation.

Otherwise, upon stretching, the new film would have a larger surface tension than its neighbors

owing to surface elasticity E∞, the total capillary force pulling on the border would be reduced,

and the relaxation would slow down. Thus the scaling of T is modified by a factor slowly increasing

with the dimensionless ratio E∞/γ (Durand & Stone 2006).

Rearrangement dynamics in coarsening wet foams with rigid interfaces exhibit long durations,

typically T ∼= 0.1–0.4 s, reminiscent of those observed in clusters (Gopal & Durian 1999, Git-

tings & Durian 2008). In contrast, rearrangements in wet foams with mobile interfaces are much

faster: The driving force ≈5R2 is given by the osmotic pressure 5 (Equation 1) that pushes the

bubbles against each other. As a bubble moves a distance ≈R upon a rearrangement, a volume of

liquid is displaced through the interstices of the bubble packing, whose permeability is K = α R2
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SLES: sodium lauryl
dioxyethylene sulfate

CAPB:
cocoamidopropyl
betaine

(see Section 3.3) (Lorenceau et al. 2009). The motion is thus slowed down by a modified viscous

Stokes friction µ (R2/T ) (φl/α) (Le Merrer et al. 2012). The balance between capillary and viscous

forces yields the relaxation time T ≈ µφl/(5α), diverging at the jamming transition as 5 → 0.

The dimensionless ratio φl/α is of the order of 103–104. Experimental results on 3D ordered

and disordered foams are in agreement with this scaling with a prefactor ≈0.33. For instance,

for foams with mobile interfaces [SLES (sodium lauryl dioxyethylene sulfate)-CAPB (cocoamido-

propyl betaine) and glycerol solution], R = 120 µm, γ = 30 mN m−1, µ = 1.6 mPa · s, a duration

T = 20 ms is measured for 5 = 100 Pa (φl of the order of 0.1, according to Figure 1 and Equation

1). These rearrangement dynamics, in which friction is dominated by viscous interstitial flow, re-

semble those in steadily flowing, concentrated hard-sphere granular suspensions, as demonstrated

recently (Cassar et al. 2005, Lespiat et al. 2011, Le Merrer et al. 2012). In contrast, if dissipation

is dominated by the flow in the contact facets (of thickness h), the friction force must scale as

µ(R2/h)(R/T ), and the predicted duration becomes T ∝ µR2/(γ h), as assumed in the bubble

model (Durian 1997).

To summarize, experiments show that the rearrangement duration varies between a few mil-

liseconds to a few seconds, depending on the bubble size, osmotic pressure, surface tension, liquid

viscosity, and surface rigidity. This scaling of local dynamics should be the basis of simulations

and mesoscopic models of foam flows.

4.3. Shear Start-Up

Upon quasi-static shear start-up (Figure 7a), the stress overshoots and then settles to a steady-state

value. The static yield stress σ y stat is the maximum stress reached at the onset of bubble rearrange-

ments starting from an initial isotropic equilibrium structure, whereas the dynamic yield stress σ y

is deduced from steady flow in the limit of low strain rates in which the foam structure is intermit-

tently broken down and reformed. In experiments with 3D foams, σ y stat was found to be roughly

15%–30% higher than σ y, and this difference was more pronounced for dry foams (Figure 7b)

(Khan et al. 1988). Quasi-static simulations predict a stress overshoot for 2D disordered dry foams

owing to a reorientation of the films along the principal directions of the strain tensor. However,

this tensorial effect is too small to account for the observed overshoot (Raufaste et al. 2010).

Upon stress growth at finite strain rates, experiments with 3D dry foams show that the onset

of T1 events is delayed (Rouyer et al. 2003). This effect can be analyzed by considering how each

of the three films joining at a Plateau border pulls on it with a net tension that includes dissipative

forces. These forces result either from viscous flow in the film (Kraynik & Hansen 1987, Kraynik

1988, Reinelt & Kraynik 1989, Kraynik & Reinelt 1990) or from interfacial resistance, as recently

proposed in a 2D model taking into account surface elasticity (Cantat 2011). Shear-induced varia-

tions of the film length L create surfactant surface concentration Ŵ gradients, which in turn lead to

variations of the surface tension γ driven by the elasticity E∞. Gradients of Ŵ are supposed to relax

on a characteristic timescale τ that reflects an adsorption/desorption process or diffusion-limited

surfactant exchange with the bulk. This model predicts a stress overshoot that strongly increases

with strain rate (Figure 7c) as high strain rates tend to induce large increases of surface tension.

The interfacial dissipation delays the onset of T1 events. A strong stress overshoot may induce

shear banding as it may lead to an instability in which the system separates into a liquid-like band

and a solid-like band coexisting at the same stress (Fielding 2007, Schall & Van Hecke 2010).

4.4. Steady Flow

We now turn to the shear-thinning behavior of foams observed upon steady flow for stresses above

the yield stress σ y (Equation 6). Experiments show that 3D foams and concentrated emulsions
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(a) Principle of a quasi-static shear start-up experiment. A shear strain ε = ε̇ t with a low shear rate ε̇ is applied to a sample, and the
stress σ is measured as a function of ε. Beyond the initially linear elastic response (σ = Go ε), σ grows up to a maximum value σ y stat and
then decreases toward its steady-state limit σ y. (b) Variation of the stress normalized by σ y upon quasi-static shear start-up for two 3D
disordered foams of the same surface tension γ = 23 mN m−1 and average bubble radius R = 65 µm. Panel b adapted with permission
from Khan et al. (1988), copyright 1988, the Society of Rheology. (c) Simulated stress-strain variation upon shear start-up for a 2D
polydisperse foam with surface elasticity E∞ for increasing shear rates as indicated. The stress is normalized by the static shear modulus
Go = 0.52 γ

√
π/A of a hexagonal foam with the same equilibrium surface tension γ and average bubble area A. τ is the characteristic

timescale of surface tension–gradient relaxation. The parameter E∞/γ is kept constant. Stress overshoots are predicted, even for small
strain rates τ ε̇ ≪ 1. Panel c adapted from Cantat (2011). Reproduced with permission of the Royal Society of Chemistry.

behave as nonthixotropic fluids. Moreover, magnetic resonance imaging (MRI) has been used

to measure the radial profile of the continuous-phase volume fraction φl in a wide-gap Couette

cell, in which the ratio of gap size to bubble diameter is of the order of 500 or more. In such a

heterogeneous stress field, foams and emulsions remain homogeneous without any shear-induced

spatial variation of φl (Ovarlez et al. 2008, 2010).

When sheared in a Couette geometry, any yield-stress fluid exhibits shear localization with a

liquid-like zone near the inner rotating cylinder, up to a radius rc such that σ (rc ) = σy (Figure 8a).

The local shear rate can be expressed as ε̇(r) = v/r − dv/dr , where v(r) is the local velocity. For

a simple yield-stress fluid, ε̇ is expected to go to zero continuously at r = rc, whereas for a shear-

banding material, ε̇ should drop discontinuously from ε̇c to zero (Fielding 2007, Dennin 2008).

MRI measurements of steady-state velocity profiles reveal that foams and concentrated emulsions

behave as simple yield-stress fluids, with no measurable ε̇c down to the experimental resolution

(typically 0.01–0.3 s−1 in foams, as in Figure 8b) (Ovarlez et al. 2008, 2010). By combining MRI

profiles and torque measurements for foams and emulsions using the same Couette cell, one can

256 Cohen-Addad · Höhler · Pitois
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Figure 8

(a) Schematic view of a cylindrical Couette cell. The stress varies with the radial position r as
σ (r) = ℑ/(2π H r2), where ℑ is the torque exerted by the inner cylinder (radius ri) rotating with angular
velocity Ä. The flow is localized near the rotating cylinder in a region that extends up to a radius rc, where
the stress equals the yield stress. (b) Dimensionless velocity profiles v(r)/v(ri) measured using MRI for a foam
steadily sheared in a wide-gap Couette geometry, at different angular velocities Ä. To avoid transient effects,
the sample is first sheared at a high Ä so that the entire gap region is flowing. Then Ä is decreased step by
step, and the profiles are successively measured. The solid line is the theoretical profile expected for a
Newtonian fluid. The foam (SLES CAPB glycerol in water, yielding mobile interfaces) has a liquid fraction
φl = 0.08, an average bubble radius R = 22 µm, and a polydispersity of 55%. Similar velocity profiles are
obtained with different bubble sizes, liquid fractions, and interfacial rigidities. Data taken from Ovarlez et al.
(2010), adapted with permission by Europhysics Letters. (c) Local constitutive law measured for the same foam
as in panel b. Each symbol corresponds to local measurements performed at a given rotational velocity. The
solid line represents a Herschel-Bulkley fit (Equation 6) to the data with σ y = 32 Pa, kc = 12 Pa · sn, and
n = 0.46. Data taken from Ovarlez et al. (2010), adapted with permission by Europhysics Letters.

deduce ε̇(r) and σ (r) for a given radius r, allowing local flow curves to be inferred. They are

consistent with a Herschel-Bulkley law (Figure 8c).

We note that long-lived transient shear banding at shear start-up has been observed in

emulsions (Becu et al. 2006). In the case of dry 3D foams, which cannot be probed by MRI,

shear banding has also been reported at shear start-up, possibly due to the difference between

static and dynamic yield stresses (Rouyer et al. 2003). In 2D foams or rafts, shear banding occurs,

depending on disorder, polydispersity, and wall friction (Dennin 2008, Wyn et al. 2008, Schall

& Van Hecke 2010, Weaire et al. 2010).

We now discuss how shear-thinning behavior can be modeled based on film-level dissipation.

In pioneering work, Kraynik & Hansen (1987) considered viscous film traction due to shear-

induced stretching. Moreover, a mechanism of liquid withdrawal from or receding into Plateau

borders has been predicted, leading to a viscous stress σv ∼ Ca 2/3, where the capillary number
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Ca = µRε̇/γ expresses the ratio of viscous to capillary forces (Schwartz & Princen 1987, Reinelt

& Kraynik 1989). As ε̇ increases, entrained films get thicker, the local shear gradients decrease,

and so the overall effective foam viscosity diminishes. The macroscopic stress is deduced from the

film tensions and orientations, and a Herschel-Bulkley law (Equation 6) is predicted with n = 2/3.

A shear-thinning model based on a lubricated sliding motion of bubbles or droplets has

been recently proposed for ordered 3D foams and concentrated emulsions (Denkov et al. 2008,

Tcholakova et al. 2008). Upon a steady flow, the structure is periodically rearranging, and con-

tact films form and disappear upon transient bubble collisions (Figure 9a). The films thin down

under the action of the capillary pressure Pc (Section 2.1), and they are simultaneously sheared as

bubbles are entrained by the applied flow. The evolution of the film thickness h is given by the

Reynolds equation ḣ = −2Pc h3/(3 µR2
c ), where the contact radius Rc is set by the osmotic pressure

(Equation 1). This sets the film thickness h ∝ R Ca1/2, which can be several orders of magnitude

larger than the equilibrium one. Assuming that mechanical dissipation arises mainly from the slid-

ing motion with a local shear rate u/h (Figure 9a), the viscous stress exerted on the contact facets is

related to the foam viscous stress: σv ∝ µ(Rε̇/h)(Rc /R)2 ∝ (γ /R)Ca1/2. The φl dependency of the

prefactor has been calculated only for moderately wet foams (Tcholakova et al. 2008). By adding

σ v to the yield stress σ y, a Herschel-Bulkley law (Equation 6) is predicted, σ ∝ σy + (γ /R)Ca1/2.

Its exponent n = 1/2 is consistent with that found experimentally for concentrated emulsions

and for foams with interfaces of low rigidity (Princen & Kiss 1989; Denkov et al. 2005, 2009).

Moreover, as illustrated in Figure 9b,c, the dependency with bubble size and bulk liquid viscosity

is well captured because data obtained for different R and µ all collapse onto a master curve when

viscous stress normalized by γ /R is plotted as a function of Ca. A dependency of σ y on ε̇ (Mohan

et al. 2011) is not considered in this model.

In contrast to foams with mobile interfaces, shear-thinning exponents n < 1/2 are found for

foams with rigid interfaces (Figure 9d,e). The viscosity effect is no longer captured by the capillary

number, as shown by the variation of n with µ. Denkov et al. (2009) established a correlation

between the rigidity of the interfaces and the shear-thinning behavior. Interfaces with low rigidity

(|E∗| of the order of a few millinewtons per meter) have an exponent n ∼= 1/2, in contrast to

high–surface modulus interfaces (|E∗| of the order of 100–1,000 mN m−1) that have n < 1/2.

However, a model of the transition criterion between low– and high–surface moduli behaviors is

missing. In ordered flowing foam, the interfaces are periodically dilated with a frequency of order

ε̇. This leads to the dissipation of mechanical energy in proportion to the surface dilatational loss

modulus E ′′ and an additional contribution to the viscous stress (Denkov et al. 2009). Indeed,

recent simulations of disordered 2D foams taking into account surface elasticity predict σv ∝ ε̇0.6,

which is similar to the observed power laws (Cantat 2011) (Figure 9g).

The role of disorder for shear thinning has been pointed out by recent simulations (Langlois

et al. 2008, Sexton et al. 2011) based on the bubble model (Durian 1995). Bubble interactions

are schematically described by a harmonic repulsion and by a linear friction Fdrag = bu, where

u is the velocity difference between neighbors. The film thickness h that determines the friction

coefficient b ≈ µR2/h is assumed to be constant in contrast to the lubrication model above.

Despite the Newtonian local friction, a Herschel-Bulkley law with an exponent n ∼= 0.5 describes

the flow macroscopically (Langlois et al. 2008). This behavior is attributed to the disorder of the

packing that leads to large velocity fluctuations at low ε̇ (Sexton et al. 2011). Only at high ε̇ do

bubbles form lanes in the shear direction, and the flow becomes laminar. Thus for small shear

rates, the simple picture of bubbles sliding in ordered lanes, as assumed in a theoretical model of

viscous friction (Denkov et al. 2008), may not capture all the physical ingredients.

Using an inclined-plane rheometer (Figure 9f ), in which the ratio of shear stress σ to osmotic

pressure 5 (σ/5 = tan θ ) is imposed by the angle of inclination θ , Lespiat et al. (2011) have
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Figure 9

(a, left) Motion of neighboring bubble layers in a steadily sheared ordered foam. The structure is periodically rearranging as bubble
layers are entrained by the applied shear. (Right) Film thinning during a bubble collision. u is the velocity difference between two
adjacent bubbles in neighboring layers. Panel a adapted from Denkov et al. (2008). (b) Dimensionless viscous stress 6v = σ v R32 /γ
versus capillary number Ca = µ R32ε̇/γ , measured for a foam and a concentrated emulsion of the same liquid fraction φl = 0.10. The
foam is composed of SLES-CAPB surfactants in water (Sauter mean radius R32 = 150 µm, γ = 30 mN m−1, and µ = 1 mPa · s;
mobile interfaces with |E∗| ∼= 4 mN m−1 measured with the oscillating-drop method at 0.2 Hz, red circles). The emulsion consists of
hexadecane droplets stabilized in water by a nonionic surfactant (R32 = 4 µm, γ = 2 mN m−1, and µ = 5 mPa · s, blue squares). The
data are fitted by a Herschel-Bulkley law (Equation 6) with n = 0.47. Data taken from Denkov et al. (2009). (c) Effect of the viscosity
of the foaming liquid on the viscous stress of foams with mobile interfaces and liquid fraction φl = 0.10. 6v = σ v R32/γ is plotted as a
function of Ca, for foams with the same SLES-CAPB surfactants as in panel b at increasing glycerol concentration (wt%). The surface
tension and the surface dilatational modulus are constant: γ ∼= 29 mN m−1 and |E∗| ∼= 4–5 mN m−1, measured as in panel b. Data
taken from Denkov et al. (2009). (d ) Effect of the viscosity of the foaming liquid on the viscous stress of foams with rigid interfaces and
the same liquid fraction φl = 0.10. The solution is composed of SLES-CAPB surfactant, glycerol, and a fatty acid [myristic acid (Mac)]
that rigidifies the interfaces owing to its low solubility in water: γ ∼= 23 mN m−1 and |E∗| ∼= 300 − 350 mN m−1, measured as in panel
b. Data taken from Denkov et al. (2009). (e) 6v versus Ca for SLES-CAPB foams with cosurfactants. Each different cosurfactant is
shown with a unique colored symbol. For those significantly increasing |E∗| (such as cetyl trimethyl ammonium chloride, lauric acid,
myristic acid, palmitic acid, and lauryl alcohol), n ∼= 0.22 is found. For cosurfactants that do not rigidify the interfaces, n ∼= 0.46 is
found, as in panel c. All the foams have φl = 0.10. Data taken from Denkov et al. (2009). ( f ) Schematic drawing of a flowing foam
driven by buoyancy along an immersed incline plane. g is the gravity acceleration. (g) Steady-flow curve predicted by a simulation for a
dry disordered 2D foam with surface elasticity. The stress is normalized as in Figure 7c, and the strain rate ε̇ is normalized by the
characteristic timescale τ of the relaxation of surface tension gradients. (Inset) Foam structure upon shear applied in the direction of the
arrows. Data taken from Cantat (2011). Panels b–d, e, and g reproduced by permission of the Royal Society of Chemistry. (h) Variation
of the dimensionless viscous stress σ/5 − tan θ∗ with the dimensionless shear rate I = µε̇/5 for steady flow of a foam (blue diamonds)
and for a granular suspension (red circles), both near the jamming point. The foam is made of TTAB in water and has mobile interfaces.
The bubble size is R = 60 µm with 10% polydispersity. Data taken from Lespiat et al. (2011), with permission by the American
Physical Society.
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probed the rheology of a polydisperse foam with mobile interfaces near the jamming transition.

In this regime, yielding is found to be controlled by the ratio σy/5 = tan θ∗
·

∼= 5◦. For θ < θ∗, the

foam slides as a whole along the plane, whereas for θ > θ∗, it flows, and a Herschel-Bulkley law is

found: σ/5 = tan θ∗ + I 0.4 (Lespiat et al. 2011). For the dimensionless shear rate I = µε̇/5, µ/5

is interpreted as the rearrangement duration (Section 4.2). Moreover, the steady flow of granular

suspensions follows a similar friction law as wet foams with mobile interfaces near the jamming

transition (Figure 9h), suggesting an analogy between the rearrangement dynamics in both cases.

As foam flows along a smooth wall, it slips (Denkov et al. 2005, 2009; Marze et al. 2008).

The viscous stress at the wall σw depends on the rigidity of the interfaces that sets the film-

level dissipation mechanisms. For mobile interfaces, bubble-wall friction arises from the parietal

Plateau borders, and it is described by a Bretherton-type friction law: σw ∝ Ca2/3
w . The capillary

number Caw = µ V o /γ is defined with respect to the relative velocity Vo between the foam and the

wall (Denkov et al. 2005). For rigid interfaces, an additional friction originates from the contact

wetting films. As they are sheared, their thickness is set by the balance between a hydrodynamic

lift force and the capillary force, and a scaling for the viscous stress σw ∝ Ca1/2
w is observed, which

is different from the mobile case (Denkov et al. 2005). These two regimes of friction have been

observed experimentally with foams of various constitutions (Denkov et al. 2005, 2009). Wall

friction is crucially important for 2D foam flow confined by solid boundaries (Cantat et al. 2004,

Cantat & Delannay 2005, Terriac et al. 2006) and has been modeled by the viscous froth model

(Kern et al. 2004, Cox 2005, Embley & Grassia 2011).

4.5. Creep Flow and Linear Relaxations

When a coarsening foam is subjected to a small constant shear step stress (σ < σ y applied

at t = 0), it is initially deformed as an elastic material, and after a transient relaxation, it

slowly creeps like a highly viscous fluid (Figure 10a). The strain increases with time t as

ε(t) = σ {1/Go + t/µo + [1 − exp(−t/τ1)]/G1}, where the parameters Go, G1, µo, and τ 1 depend

on the physicochemical characteristics of the foam (Cohen-Addad et al. 2004, Marze et al. 2005).

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Figure 10

(a) Creep response of a foam in the solid-like regime. A constant step stress σ (σ < σ y) is applied during a time interval 1t = 100 s.
The normalized strain response ε Geo/σ is plotted as a function of time, for foams with three different coarsening rates. During 1t, the
bubble size remains to a good approximation constant, but many rearrangements are induced by the coarsening. (Inset) Characteristic
time of the mechanical relaxation µo /Geo , measured using rheometry, versus the average time interval between coarsening-induced
bubble rearrangements in a volume (2 R)3. This time interval is measured in situ using a multiple coherent light-scattering technique
(diffusing-wave spectroscopy). The fitted volume of a rearrangement is vr = (6 R)3. The foam surfactants are AOK (sodium α-olefine
sulfonate)-LOH surfactant and N2 gas (fast; red long dashes), or a mixture of N2 and C6F14 vapor (slow; blue dots), and Gillette normal
regular foam (medium; short purple dashes). The liquid fraction is φl = 0.07. Data taken from Cohen-Addad et al. (2004). (b) Oscillatory
response, showing variations of the storage G′ and loss G′′ shear moduli with frequency. The continuous lines represent the moduli
deduced from the creep compliance J(t) using a Laplace transform G∗(ω) = (1/ i ω) L[J(t)][i ω]. The variations of G∗ at low frequency
arise from two relaxation processes of characteristic frequencies, fo = Go /(2 π µo ) and f1 = 1/(2πτ1). The straight line of slope 1/2 is a
guide for the eyes. The sample is Gillette shaving cream with a liquid volume fraction φl = 0.08, bubble size R = 25 µm, and surface
tension γ = 30 mN m−1. Data taken from Cohen-Addad et al. (1998, 2004) and Gopal & Durian (2003). (c) Fast relaxations in a foam
with rigid liquid-gas interfaces, showing variations of G′ and G′′ with frequency between 1 and 100 Hz for different mean bubble sizes.
The sample is Gillette shaving cream with φl = 0.08. In contrast to G′, the loss modulus G′′ is independent of the bubble size. The
lines correspond to a fit of G∗( f ) = Go (1 +

√
i f/ fc ) + 2π iµ∞ f for each given average bubble diameter d. Data taken from Krishan

et al. (2010), reproduced with permission by American Physical Society. (d ) Characteristic frequency fc of fast relaxations versus static
shear modulus Go, for foams with rigid interfaces (Gillette shaving cream) or mobile interfaces (SLES-CAPB) and different glycerol
concentrations (in wt%) as labeled. The relaxations slow down as the bulk liquid viscosity increases with the amount of glycerol. The
continuous lines are fits to the predictions given in the text. Data taken from Krishan et al. (2010).
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For steady creep (t ≫ τ 1), the strain increases linearly with time: ε(t) ∼= σ (1/Geo + t/µo ), as for

a Maxwell fluid of shear elastic modulus Geo = 1/Go + 1/G1 and viscosity µo. This has been

explained as a consequence of a temporary local loss of elasticity upon coarsening-induced bubble

rearrangements. It is described by a mesoscopic homogenization model relating µo, Geo, the num-

ber of rearrangements ρr per unit time and volume, and the effective average volume of the region

where the local stress is relaxed upon a rearrangement vr : µo = Geo /(ρrνr ) (Cohen-Addad et al.

2004, Vincent-Bonnieu et al. 2006). In situ measurements of the creep rate and the coarsening-

induced rearrangement rate confirm quantitatively the prediction that creep slows down as the

coarsening rate decreases (see the inset in Figure 10a). The transient creep relaxation time scales

as the ratio of surface dilatational viscosity and surface tension τ1 ≈ µd /γ (Cohen-Addad et al.

2004). For foams with rigid interfaces, the measured values of τ 1 are of the order of 0.1 s, which is

in rough agreement with the values of µd /γ measured independently (Cohen-Addad et al. 2004).

The creep compliance ε(t)/σ is related to the complex shear modulus G∗ = G′ + iG′′ by a

Laplace transform, as expected for a linear response (Figure 10b). The peak of G′′ is the hallmark

of the coarsening-driven relaxation (at fo
∼= 0.0005 Hz in Figure 10b). Thus at low frequency, a
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foam behaves indeed as a Maxwell liquid, and a scaling law governs the variation of G∗( f, ta ) with

coarsening age ta and frequency f: G∗( f, ta ) ∼= 2 π i f a(ta )Go (ta )/[1 + 2π i f a(ta )Go (ta )]. The fre-

quency scaling factor is a(ta ) = µo (ta )/Go (ta ) (Höhler & Cohen-Addad 2005). As a foam coarsens,

the average bubble size increases, and the frequency of rearrangements decreases; therefore, the

foam becomes softer [as Go (ta ) ∼ 1/R according to Equation 5] and a(ta ) increases (the peak is

shifted toward smaller frequencies according to the mesoscopic model).

In the frequency range 1 . f . 100 Hz, foams exhibit fast relaxations unrelated to the

coarsening process, in which the loss modulus G′′ increases roughly as f 1/2 (Figure 10c) (Cohen-

Addad et al. 1998, Gopal & Durian 2003, Krishan et al. 2010). Similar variations of the complex

moduli have been reported for concentrated emulsions (Liu et al. 1996) and soft pastes (Cloitre

2011). Within this frequency range, for foams with moderate interfacial rigidity, the modulus

can be approximately described by G∗( f ) ∼= Go (1 +
√

i f/ fc ) + 2π iµ∞ f . Similar behavior is

predicted for packings of soft spheres in a viscous liquid in which the disorder gives rise to generic

collective floppy relaxation modes (Liu et al. 1996, Tighe 2011). µ∞ is an effective viscosity that

becomes dominant at high frequency. In foams, the characteristic relaxation frequency fc can

be set by dissipative processes in the films or in their junctions (Buzza et al. 1995). The scaling

of fc with bubble size fc ∝ 1/R 2 found experimentally for foams with rigid interfaces indicates

that the dissipation due to shear flow within the liquid films is dominant. For foams with mobile

interfaces, a different scaling (omitting prefactors) is observed fc ∝ 1/(µ R + µd ), suggesting

that dissipation mainly results from flow at the junctions between the Plateau borders and the

films (Figure 10d). In addition, the interfacial viscoelasticity of the gas-liquid interfaces may also

contribute directly to the scaling of G∗ with frequency.

5. CONCLUDING REMARKS

The permeation of liquid through a foam and the flow of a foam as a whole are both closely

linked to the structure of the bubble packing, composed of Plateau borders, nodes, and films.

Under static conditions, this structure and its mechanical properties are well understood. The

flow behavior is much more complex owing to a coupling between the dynamics of the bulk

liquid and the rheological properties of the gas-liquid interfaces. The interfacial behavior can be

mobile or rigid, depending on the physicochemistry of the adsorbed surfactant layer. Thus the

modeling of permeation in foams and their flow requires multiscale approaches. The coupling

with interfacial rheology is specific to foams and emulsions, but the mechanisms of flow on the

bubble scale are reminiscent of those encountered in other concentrated dispersions, such as soft

pastes and granular suspensions, suggesting fruitful analogies.

FUTURE ISSUES

1. The coupling between flow in channels and in the adjacent films is still not completely

understood. How can Marangoni-driven recirculation be modeled quantitatively?

2. Current models of foam permeability are accurate in the dry limit. New approaches are

needed to model the behavior close to the wet limit in which channels and nodes are no

longer clearly distinguished.

3. Structural disorder and film-level flow coupled to interfacial rheology have been iden-

tified as possible origins of mechanical dissipation in foams. How can their interplay be

delineated?
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A
n
n
u
. 
R

ev
. 
F

lu
id

 M
ec

h
. 
2
0
1
3
.4

5
:2

4
1
-2

6
7
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.a
n
n
u
al

re
v
ie

w
s.

o
rg

b
y
 1

3
7
.1

2
1
.1

.2
6
 o

n
 0

1
/1

5
/1

3
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

.



4. The coupling between successive bubble rearrangements depends on their spatial and

temporal extent. What sets these timescales and length scales? What is their impact on

macroscopic flow? How do these dynamics in foams compare with flow dynamics in other

soft jammed systems?
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Höhler R, Cohen-Addad S. 2005. Rheology of liquid foam. J. Phys. Condens. Matter 17:R1041–69
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A Generalized View of Foam Drainage: Experiment and
Theory

Stephan A. Koehler,* Sascha Hilgenfeldt, and Howard A. Stone
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A new experimental method is presented using fluorescein dye to determine the spatial and temporal
variations of the liquid volume fraction in aqueous foams. This method is used for quantitative studies
of liquid redistribution (drainage) in three types of experiments: forced, free, and pulsed drainage.
Characteristic quantities, such as the drainage velocity, show power-law dependences on experimental
parameters that are inconsistent with traditional foam drainage models based on Poiseuille-type flow in
the liquid-carrying channels (Plateau borders) of the foam. To obtain a theoretical description, the foam
drainage equation is generalized using an energy argument which accounts for viscous dissipation in both
the channels and the nodes (or vertices, which are the junctions of four channels) of the liquid network.
Good agreement with results for all three types of drainage experiments is found when using this new
model in the limit where the dissipation is dominated by the nodes.

1. Introduction

There are many industrial as well as everyday uses for
foams in either liquid or solid form. Aqueous foams are
ubiquitous in the kitchen: examples are whipped cream,
chocolate mousse (N.B. mousse is the French word for
foam), beer foam, and soapy dish water. Polymeric foams
have numerous applications such as seat cushions and
packaging (e.g. Styrofoam). Recently there has also been
interest in foaming metal melts to produce metallic foams,
which are useful in many mechanical applications because
of their structural stability and ultralight weight. These
foams have recently come into use in the aerospace and
automotive industries.1,2

Many foams are made by introducing bubbles into a
liquid which contains a surfactant in order to stabilize
the gas/liquid interfaces. The spatial and temporal liquid
distribution is governed by the fluid dynamics of the liquid
in the foam. Under the influence of gravity liquid will
drain from the foam and accumulate at the bottom, leaving
the top deprived of liquid. Such an inhomogeneity of liquid
content may be undesirable in applications such as the
aforementioned structural metal foams. It is unclear how
the dynamics of fluid flow varies for different kinds of
foams: Is there a simple description of fluid transport
through foams that is universally applicable to different
situations and different foams? Do different foams have
different boundary conditions at the gas/liquid interface?
In particular, how does the presence of a surfactant affect
the boundary conditions? Even the fluid dynamics of
aqueous (soap) foams, which are the simplest and easiest
system to study, is poorly understood.3-5 Here we report
new results for three types of drainage experiments for

aqueous foams, along with a modification to the existing
foam drainage model that succeeds in capturing the
features of liquid drainage in all of these cases.

Foam drainage is the flow of liquid through the
interstitial spaces between the bubbles. The flow is driven
by capillarity and (usually) gravity and is resisted by
viscous damping.6-9 The interstitial space, i.e., the liquid
volume, can be divided into (i) films, which form between
two adjacent bubbles and are bounded by almost flat
bubble faces, (ii) channels (also known as Plateau borders),
where three films meet, and (iii) nodes (also known as
vertices or junctions), where four channels meet (see Figure
1b). On the scale of single bubbles the flow is rather
intricate: for example in the nodes flows from different
channels merge and subsequently split into flows through
other channels. The dynamics is further complicated by
the flow along the gas/liquid interface; e.g., are the surfaces
rigid or mobile? In spite of this small-scale complexity, on
a macroscopic scale (i.e. lengths of at least several bubble
diameters) simple ordered flow is often observed and it is
possible to successfully describe foam drainage using
effective-medium models.

There are other processes that can change the macro-
scopic appearance of a foam, in particular coarsening,
which refers to the growth of the average bubble size.
This can occur either by film rupture (coalescence of
adjacent bubbles) or by diffusive coarsening, where large
bubbles grow at the expense of smaller bubbles, whose
higher capillary pressure makes them lose gas. This latter
effect is similar to the process known as Ostwald ripening
of metal grains.10 With a good surfactant, films are very
stable and rupture events occur only rarely. Diffusive
coarsening will always be important at long enough times;
however, in the experiments reported here we have taken
countermeasures to avoid coarsening.* To whom correspondence should be addressed. E-mail:

skoehler@deas.harvard.edu.
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In the past, researchers have focused on a variety of
aspects of soap foams. The 19th century Belgian scientist
J. A. F. Plateau, at a time when he was already blind,
originated the study of soap foams, mainly investigating
their geometry. He formulated “Plateau’s rules”, which
state that three films must meet at 120° angles and four
channels at the tetrahedral angle of arc cos(-1/3) ≈ 109.5°,
and also the eminent minimal surface problem known as
the Plateau problem.11,12 The reader interested in the large
body of foam research spanning physical chemistry and
engineering applications is referred to the monographs
by Mysels et al.13 and Bikerman6 and the recent compila-
tion by Prud’homme and Khan14 as well as the proceedings
edited by Sadoc and Rivier.15

We are particularly interested in simple dynamical
models for foam drainage. Research in this spirit appears
to begin with the work of Leonard and Lemlich,7 who
performed foam drainage experiments and developed a
model based upon balancing gravity and viscous effects
for a Poiseuille-type flow in the channels. Kraynik found
analytical solutions to this model for the case of negligible
surface tension.4 The attempt to remove the effects of
surface tension recently led Durian and co-workers to
perform drainage experiments using a clever geometry of
the foam container16 (earlier publications17,18 also treat
container shape effects on drainage). Reintroducing
surface tension into the description of drainage, Goldfarb
et al. developed what is now called the foam drainage
equation.19 This theory was supported by systematic
experiments performed in Weaire’s group several years
later,20 who also presented an independent reformulation

of the foam drainage equation. However, already Desai
and Kumar3 and Kraynik4 remarked that the basic
assumptions of this standard model lead to slower
drainage rates than those observed in their experiments.
In recent work, we proposed a modification to the model,
based upon the nodes of the liquid network as the principal
region of dissipation. This modified model agrees well with
data from our forced drainage experiments.5 Very recently
Langevin and co-workers found that changing the surface
viscosity of a SDS (sodium dodecyl sulfate) solution by
adding dodecanol affects the drainage rates, and for SDS
alone their forced drainage results agree with ours.21

Further evidence that changing the interfacial chemistry
significantly alters the drainage rate is provided by Wilde
et al.,22 who report that foams stabilized by proteins drain
much slower than foams stabilized by low molecular
weight surfactants, such as SDS.

In this paper, we treat the two different models as
limiting cases of a generalized theory and demonstrate
that the theory which focuses on dissipation in the nodes5

is in close agreement with data for a variety of drainage
experiments. The remainder of this section details the
geometry of foams and presents the main ideas of a foam
drainage theory, while section 2 describes the experi-
mental setup and methods, along with the main results
of the measurements. In sections 3 and 4 a generalized
foam drainage equation is derived and discussed and
comparedto theexperimental results.Concludingremarks
are given in section 5.

1.1. Foam Geometry. The surfaces of the bubbles of
aqueous foams are coated with surfactants which are
necessary to stabilize the films against rupture by
providing a disjoining pressure (electrostatic and steric
in nature) that keeps opposing faces from merging.23

Outsideof the filmregions, thedominant forcedetermining
the foam geometry is surface tension, which acts to
minimize the surface area of the bubbles and results in
constant mean curvature.

Onesimple idealized foamstructure is theKelvin foam,24

which is a collection of regular tetrakaidecahedral bubbles
(cells) with edge length L (see Figure 1a and e.g. Princen25).
The maximum dimension of a cell is approximately 2.8 L.
Typical film thicknesses of the faces of aqueous foams are
j 100 nm,26 so that most of the liquid resides in the
channels and nodes, which are typically between 10 µm
and 1 mm wide. Here the contact angle between two
channel walls meeting at a face is assumed to be
vanishingly small, and the liquid content of the face (and
thus the film thickness) is assumed zero. As the amount
of liquid in the channels and nodes increases, the mean
curvature of the interfaces decreases, and the edges and
corners of the polygonal bubbles become more rounded.
We quantify the liquid content of a foam by the liquid
volume fraction ε, defined as the volume of liquid in a
macroscopic foam region divided by the total volume of
the region.

(11) Plateau, J. A. F. Statique expérimentale et théorique des liquides
soumis aux seules forces moléculaires; Gauthier-Villars, Trubner et cie:
Paris, 1873.
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Dover: London, 1992.
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1996, 8, 3715-3731.

(21) Durand, M.; Martinoty, G.; Langevin, D. Phys. Rev. E 1999, 60,
R6307.

(22) Wilde, P. J.; Mackie, A. R.; Husband, F. A.; Gunning, A. P.;
Morris V. J.; Fillery-Travis, A. The Role of Interfacial Structure and
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Films: Proceedings of the International Workshop on Foams and Films,
Leuven, Belgium; Weaire, D., Banhart, J., Eds.; MIT-Verlag: Bremen,
Germany, 1999; p 59.

(23) Adamson, A. W. Physical Chemistry of Surfaces; Wiley: New
York, 1990.

(24) Kelvin, L. Philos. Mag. 1887, 24, 503.
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(26) Wasan, D. T.; Nikolov, A. D.; Lobo, L. A.; Kozco, K.; Edwards,
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Figure 1. (a) Tetrakaidecahedral bubble with liquid-filled
channels and nodes, with edge length L, that composes an
idealized Kelvin foam (reproduced from a figure by A. Kraynik,
private communication). A liquid network unit composed of
one node and four half-channels with corresponding volume
fraction ε ) 0.005 is shown in (b). A “dog-bone”-shaped liquid
network unit, one channel with one-quarter-node at each end,
is sketched in (c). (a) and (b) have been generated using the
Surface Evolver.27
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To arrive at a geometrical description of the channel
network (no faces) we consider the equilibrium situation
without gravity, where the mean curvature H is constant.
The two principal radii of curvature r1 and r2 will change
from point to point, obeying 2H ) r1

-1 + r2
-1. We define

the characteristic radius of curvature r by r-1 ) 2H and
plot εas a function of r in Figure 2. The points are computed
for the idealized tetrakaidecahedral foam using the
Surface Evolver,27 and the solid line is a fit to the formula

Since here we are principally concerned with the dry foam
limit, corresponding to ε , 1, we have r , L, and the
approximation

is good for liquid volume fractions ε j 0.1.
There is a simple geometrical justification for the

polynomial fit (1). Foams with low liquid content (ε j
0.05) have channels that are long, essentially straight,
and slender, containing much more liquid than the nodes.
With decreasing ε the channel length approaches L and
the transverse radius of curvature of the channel ap-
proaches r from above because the longitudinal radius of
curvature becomes large. The cross-sectional area of a
channel approaches δar2, with δa ) x3 - π/2, which is the
area between three contiguous circles of radius r (see
Figure 1b). If one neglects small overlap regions in the
junctions, the liquid content of a tetrakaidecahedral bubble
is 12δar2L because there are 12 complete channels per
bubble. The volume of the tetrakaidecahedron1 is 27/2L3,
so the liquid volume fraction due to the channels is
12δa2-7/2(r/L)2 ≈ 0.171(r/L)2, which is the first term on the
right-hand side of (1). Higher-order corrections arise from
the presence of nodes which (i) diminish the length of the
channels by O(r) and (ii) introduce a node volume νn )
δnr3, with δn ) O(1).28 This leads to the δ′ term in (1), the
only genuine fit parameter in the equation.29 For foams
with low liquid content, however, the channels account

for almost all of the liquid, and we will neglect node
corrections to the volume.

1.2. Foams as Porous Media. It is useful to consider
an analogy between the drainage of a foam and the flow
of liquid through a porous medium such as sand or a packed
bed of rigid spheres.30,31 The dimensions and number
density of the connected pores determine the permeability
of the porous medium to liquid flow. Darcy’s law relates
the driving pressure gradient G to the permeability k and
the average liquid velocity through the medium v,

where µ is the viscosity, p is the liquid pressure, and Fg
is the gravitational force. Permeability has dimensions of
length squared and scales with the square of a charac-
teristic pore size. For foams the interstitial space between
the bubbles (channels and nodes) plays the role of the
pores through which liquid can pass. However the
interstitial space (i.e. volume fraction) of a foam is not
fixed and bubble deformation accompanies liquid flow.
Thus unlike conventional porous media, foams have a
permeability that is dynamically coupled to the liquid flux.

Note that eq 3 is macroscopic in the sense that all
quantities (e.g. the gradient) are averaged over length
scales larger than a pore size. Unless explicitly denoted
“microscopic”, all quantities will be understood as macro-
scopic, describing foam drainage on an effective-medium
level.

1.3. The Generalized Foam Drainage Equation.
We seek to describe the spatial and temporal dynamics
of the liquid volume fraction, ε(x, t). Inertial terms can be
neglected, as we estimate that the Reynolds numbers of
liquid flow, based upon a typical channel radius, are never
larger than 10 and in most cases are much smaller than
1. The discussion below is a modified presentation of
Koehler, Hilgenfeldt, and Stone32 and has many features
in common with previous models.19,33

A suitable starting point is the equation of mass
conservation,

in which v (see (3)) is the macroscopic velocity of the flow
through the foam. On the left-hand side of (3), the liquid
pressure p is given by the Young-Laplace equation

where γ is the surface tension. The foam is assumed
monodisperse, so all of the bubbles have the same gas
pressure pgas, as well as the same volume, because the
weight of the foam is small and compression due to gravity
is negligible.8

With (2) and (5) the driving force G from (3) becomes

We use (3) and (6) to solve for v in terms of ε and the
permeability k(ε) and substitute this into (4) to arrive at
the generalized foam drainage equation(27) Brakke, K. Univ. of Minnesota Geometry Center, Surface Evolver

Version 2.10c; http://www.geom.umn.edu.
(28) The prefactor δn for the node volume can be estimated assuming

that the geometrical shape of the nodes resembles that of the interstitial
space between hexagonally close-packed spheres (which is the structure
of a wet foam with spherical bubbles). The packing fraction of the fcc
structure is x2π/6 ≈ 0.74, and each sphere has 14/4 complete nodes.
This yields δn ≈ 0.31.

(29) Phelan, R.; Weaire, D.; Peters, E.; Verbist, G. J. Phys. Condens.
Matter 1996, 8, L475.

(30) Zick, A. A.; Homsy, G. M. J. Fluid Mech. 1982, 115, 13.
(31) Larson, R. E.; Higdon, J. J. L. Phys. Fluids A 1989, 1, 38.
(32) Koehler, S. A.; Hilgenfeldt, S.; Stone, H. A. Foam Drainage:

Experiments and a New Model. In Foams and Films: Proceedings of
the International Workshop on Foams and Films, Leuven, Belgium;
Weaire, D., Banhart, J., Eds.; MIT-Verlag: Bremen, Germany, 1999;
p 49.

(33) Weaire, D.; Phelan, R. J. Phys. Condens. Matter 1996, 8, 9519.

Figure 2. Liquid volume fraction ε of the idealized Kelvin
foam versus r/L as computed (O) by the Surface Evolver27 in the
absence of gravity. The solid line is the polynomial fit (1) which
is in excellent agreement with the numerical data.

ε ) δε(r
L)2

+ δ′ (r
L)3

δε ≈ 0.171 δ′ ≈ 0.20 (1)

r ≈ δε
-1/2Lε

1/2 (2)

G ) -∇p + Fg ) µv/k (3)

∂ε

∂t
+ ∇‚(εv) ) 0 (4)

p ) pgas - γ/r (5)

G ) Fg + ∇(γ/r) ≈ Fg +
γδε

1/2

L
∇ε

-1/2 (6)
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It remains to compute the foam permeability in terms
of ε. A detailed derivation of a general expression for k(ε)
will be presented in section 3. Here, we give a simple
argument for the functional form of k(ε) in the two limiting
models of foam drainage.

The original foam drainage model is based upon rigid
gas/liquid interfaces, which cause Poiseuille-like flow in
the channels.19,20 The viscous damping force (per unit
volume) in the channels then is O(µv′r-2), where v′ is a
characteristic liquid velocity which is on the order of the
macroscopic liquid velocity. For dry foams the node volume
is negligible (cf. (1)), and so the viscous damping of the
liquid flow is dominated by the channels. Since the
Reynolds number is small, the viscous damping equals
the driving force from Darcy’s law (cf. (6)), and it follows
from µv/k(ε) ∝ µv′r-2 that k(ε) ∝ r2 ∝ L2ε. To differentiate
from other models, we call this the channel-dominated
model.

An alternative boundary condition stipulates that the
gas/liquid interface is not rigid but rather freely slipping
and stress-free.5 Although the flow in the nodes may be
very complicated due to the mixing and bending of the
flow (see Figure 1b), the viscous damping force (per unit
volume) inside the nodes is O(µv′r-2), because r is the only
length scale of the nodes. Inside the channels however
the viscous damping is negligible, because there the flow
is pluglike and the velocity gradients are small. Hence
the nodes dominate the dissipation, and we shall call this
the node-dominated model. Thus the average damping
force over a network structure is given by O(µv′r-2(r/L)),
because the ratio of the node volume to the volume of the
network is O(r/L). Equating the net damping force to the
term µv/k(ε) of Darcy’s law (3) yields k(ε) ∝ rL ∝ L2ε1/2.

2. Foam Drainage Experiments
In the following we briefly describe the experimental tech-

niques we use to measure the liquid volume fraction of draining
foams, which differ from previous work7,34,35 in several respects.
We then review the three different types of foam drainage
experiments that we have studied in detail: forced, free, and
pulsed drainage.20 In this section, we present the main results
of the measurements. An extensive analysis of the drainage
dynamics is deferred to section 4.

2.1. Experimental Procedure. To study foam drainage
experimentally we have developed a new measurement scheme
and a new procedure to produce a uniform, nearly monodisperse
foam that does not show signs of coarsening.5 The foam is inside
a vertical Tygon tube that is 2 m long and has a diameter of 1.3
cm (see Figure 3). The bottom of this foaming tube is inserted
into a vessel containing the soap solution, and a slow flow of C2F6
gas through a blunt-end syringe needle produces a constant
supply of monodisperse bubbles, filling the tube at a rate of 0.025
cm/s. At the top the foam flows out of the Tygon tube into a catch
basin about 1 m above the experimental region of interest.

The foaming solution is composed of single-distilled water,
SDS surfactant (sodium dodecyl sulfate), and fluorescein salt in
the ratio of 1 to 5×10-3 to 2.5×10-4 by weight. The corresponding
molarity of SDS is 0.017 M, which is well above the critical micelle
concentration (CMC) of this surfactant.36 The results were
unchanged when the soap concentration was either doubled or

halved. SDS is a surfactant whose properties are well-known
and which is readily available in purified form. The findings
reported in the present work support earlier experiments with
Dawn dish detergent, tap water, and air5 and show that the
drainage behavior seems to be robust toward these changes. We
also conducted some experiments using the surfactant AOS (R-
olefinsulfonate), with essentially unchanged results.

As a result of the slow bubbling, the foam inside the foaming
tube is well drained and very dry (ε < 10-4). We chose C2F6 for
bubbling, because this gas has a low diffusion coefficient and a
low saturation level in water which minimizes coarsening. The
bubble size was determined from a close-up photograph of the
foam, and the average edge length is L ) 0.15 cm with a standard
deviation of 0.04 cm. The foam does not age or coarsen with time,
when observed at a fixed height in the tube, because it is
continually being replenished from the bottom. The edge length
L does not vary noticeably over the region of observation, which
is 76 cm high and starts 40 cm above the foaming solution.

The actual foam drainage experiments record the dynamics
of excess liquid added to the well-drained foam. This excess liquid
is the same soap solution described above and is injected into the
foam through a syringe needle inside the foaming tube. A
programmable syringe pump was used for the injection process,
and the amount of liquid actually dispensed was independently
checked with digital calipers.

2.2. Fluorescence Measurements. The experimental mea-
surements use UV light to excite fluorescence in the liquid part
of the foam. The small amount of fluorescein salt dissolved in the
foaming solution absorbs the illuminating UV radiation and emits
visible (yellow-green) light. The fluorescence intensity, recorded
by a CCD digital camera, with a green light filter mounted, is
thus a measure of liquid content. Consider a UV light ray that
passes through the foam, which has a total path length H in the
foam and intensity IUV(h), where h e H is the distance traversed.
The attenuated intensity is IUV(h) ) exp(-Rliqεh), where Rliq is
the UV absorption coefficient (inverse of absorption length) of
the fluorescein solution. We assume that the emission of visible
light from the fluorescein occurs isotropically and that for small
ε the visible light is not reabsorbed noticeably, making the total
detected fluorescence intensity

so that a linear relation I ∝ ε between detected intensity and

(34) Weaire, D.; Pittet, N.; Hutzler, S.; Pardal, D. Phys. Rev. Lett.
1993, 71, 2670.

(35) Weaire, D.; Findlay, S.; Verbist, G. J. Phys. Condens. Matter
1995, 7, L217.

(36) Prud’homme, R. K.; Warr, G. G. Foams in Mineral Flotation and
Separation Processes. In Foams, Theory, Measurements and Applica-
tions; Prud’homme, R. K., Khan, S. A., Eds.; Marcel Dekker: New York,
1996; p 511.

Figure 3. Schematic of the experimental setup, here showing
forced drainage. Liquid is injected into the foaming tube at a
constant rate above the field of view of the CCD camera. This
produces a growing region of wet foam in the otherwise well-
drained foam. The CCD camera records the fluorescence of the
foam illuminated by UV light from which the liquid volume
fraction in the foam can be deduced.

I ∝ 1 - exp(-RliqεH) (8)

µ∂ε

∂t
+ Fg‚∇(k(ε)ε) -

γδε
1/2

L
∇‚(k(ε)∇ε

1/2) ) 0 (7)
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volume fraction is valid if RliqεH , 1, and the intensity saturates
(I f Imax) for RliqεH . 1.

An independent measurement of liquid volume fraction is
possible when performing a forced drainage experiment, as
described in section 2.3. Figure 4 shows that the relationship
between I and ε for ε j 0.05 is close to linear in an extended range
of liquid volume fractions. A small deviation is, however,
evidenced by the best-fit power law

which we attribute to a slight nonlinearity of the camera response.
From the range of approximate linearity in Figure 4 and using
eq 8, we estimate Rliq

-1 ≈ 0.5 mm, which is comparable to the
liquid path lengths εH in our experiments, where H is the
diameter of the foaming tube.

Data points at large ε J 0.1 were not used for the fit because
of the saturation of the fluorescence. Also, two data points at
extremely small ε j 10-3 were excluded as these very faint signals
cannot be detected with reasonable accuracy.

2.3. Forced Drainage. In the forced drainage experiment, a
constant flux of the soap solution is added at the top of the foaming
tube (about 20 cm above the field of view of the camera), and the
liquid invades the completely drained foam from above. The
measured volume fraction profiles at five successive times in
Figure 5a show a drainage wave making its way down the foam
tube. It is observed that all forced drainage profiles have a distinct
front that does not change in shape with time and moves
downward with a constant velocity vf, thus forming a solitary
wave. Because the foam is generated at the bottom at a constant
rate, it is necessary to add the (very slow) speed at which the
foam rises to the measured downward front velocity of the
drainage wave.

The forced drainage wave profile consists of three regions (see
Figure 5a): the drained region below the traveling wave, which
has very little liquid volume content (ε < 10-4), the transition
(front) region, which has a characteristic width (typically several
bubble diameters), and finally the main body, which has uniform
volume fraction ε ) εmain. We choose to measure the front width
as the vertical distance along the profile where ε drops from 80%
to 20% of its main body value. In the experiments, both the front
speed vf and width wf are measured as a function of the injected
one-dimensional liquid volume flux Φ. Because of conservation
of liquid volume, the flux through the foam is simply the product
of the average macroscopic liquid velocity v and the main body
liquid volume fraction εmain; thus

The liquid velocity of the forced drainage wave is the front velocity,
v ) vf, because the profile maintains its shapessee Figure 5a.
If the front traveled faster than the average liquid velocity, it
would broaden, and if it were slower than the average liquid
velocity, a steepening of the front would be observed.

Relation (10) allows for an independent calibration of fluo-
rescence intensity measurements as mentioned in section 2.2

and displayed in Figure 4, as the volume flux Φ is a controlled
quantity and v ) vf is directly measured without the need for an
intensity calibration.

Figure 6 shows the front velocity (measured at half-maximum)
versus εmain for 15 forced drainage experiments with the flux
varying over more than four decades from Φ ) 3.0 × 10-5 cm/s
to Φ ) 1.1 cm/s. The error bars are determined by the standard
deviations in the measured front velocity as it moves down the
camera’s field of view, and the relative error rapidly decreases
with increasing volume fraction. The data points demonstrate
a power-law dependence of vf on εmain,

which is shown by the solid line.37 The dashed line shows the
expected dependence of vf on ε using the traditional channel-
dominated foam drainage equation based upon a rigid gas/liquid
interface. Clearly, this model does not describe the data well.

Figure 7 is a log-log plot of the measured front width of the
forced drainage profile against εmain, which shows a decrease in

(37) Note that plotting v against Φ gives a power-law fit vf/(cm/s) )
3.66 (Φ/(cm/s))0.37. This is in close agreement with experiments using
Dawn detergent.5

Figure 4. Forced drainage fluorescence intensity plotted
against main body liquid volume fraction, determined from eq
10. The line shows the best fit to power-law behavior; see eq
9. The open squares were not included in the power-law fit.

Figure5. Profiles showing the dynamics of three foam drainage
experiments: (a) forced drainage, (b) free drainage, and (c)
pulsed drainage. Each profile is labeled by the time (in seconds)
when it was taken, and the +z-axis is pointing in the direction
of gravity. Horizontal arrows in (a) and (b) show the location
of the half-maximum of the profiles. The vertical arrow in (b)
shows the location of the “knee” of the pulse at t ) 1 s. In (c)
the arrows show the location of the pulse maximum for five
successive profiles. All profiles have been averaged over
approximately 1 cm (a few bubble diameters) and for pulsed
drainage at longer times over several centimeters. The inset of
(c) shows the three regions of a pulse to be discussed in section
2.5 (here for t ) 5 s): (i) the rear, which is above the injection
point (dashed line); (ii) the middle region extending from the
injection point to the pulse maximum (solid line); (iii) the front,
which is the region below the pulse maximum (dashed and
dotted line). Note that relation (9) was used to determine ε.

I ∝ ε
0.89 (9)

εmain ) Φ/v (10)

vf ≈ cvεmain
dv cv ≈ 7.94 cm/s dv ≈ 0.60 (11)
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front width that levels off at ε J 0.05. The solid data points fall
on a straight line, indicating power-law behavior, for which a fit
yields

The first two data points in Figure 7 (εmain j 10-3) were not used
for the fit, because of the extremely low signal and relatively
large error in the fluorescence intensity. The dashed line shows
the prediction of channel-dominated theory which captures the
power-law behavior of the front width measurements for εmain j
0.05, but the prefactor is less than half that found in (12).

The leveling off of the front width can in part be attributed
to the break down of the geometric approximations of section
1.1, because the assumption that the channels contain most of
the liquid is no longer valid for large ε. Another important
consideration is that our experiments study one-dimensional flow
along the vertical, which is valid provided that liquid rapidly
spreads horizontally as to remove radial variations in ε.38 Any
radial variations in the liquid volume fraction will give rise to
horizontally acting capillary forces which scale as 1/R, where R
≈ 0.63 cm is the tube radius. The capillary force along the vertical
scales inversely with the front width, 1/wf, and thus is weaker
than the horizontal capillary force for wf J R. In this case, we
expect liquid to be distributed more or less evenly throughout
the cross-section of the tube, and one-dimensional flow is a good
approximation. For wf j R, however, capillary forces are too

weak to allow for sufficient radial liquid redistribution. Instead
of measuring the front of a one-dimensional wave in the vertical
direction, the fluorescence intensity then picks up the radial ε

profile. Figure 7 shows that for large εmain J 0.1 the front width
indeed saturates at wf ∼ R.

2.4. Free Drainage. Free drainage is the evolution of the
liquid volume fraction of an initially uniform foam of finite height.
Figure 5b shows the experimental dynamics with initial uniform
(main body) volume fraction εmain ≈ 5 × 10-3. A foam of finite
height is created by inserting a smaller tube into the foaming
tube at the top of the camera’s field of view where the injection
needle is located. Sucking air through the smaller tube removes
foam above the injection point. The origin of the z-axis is the
location of the injection needle, which has an experimental
uncertainty of about (1 mm and is about 5 mm (equivalent to
a few bubble diameters) below the top of the foam. For the
duration of the free drainage experiment, unlike the other two
experiments, foaming from the bottom is halted. To achieve the
initial condition of a uniform volume fraction, a continuous flux
of liquid is injected, as in forced drainage, at the top of the foam,
and the front is allowed to reach the bottom of the foam. At that
point in time, the foam is uniform, and turning off the liquid
supply marks the beginning of the free drainage experiment.

We observe that the average edge length for some free drainage
experiments increased somewhat from the forced drainage value
L ) 0.15 ( 0.04 cm. During the foaming process, the foam is
pushed up through the foaming tube and there is friction of the
bubbles against the walls. This friction appears to compress the
bubbles inside the foaming tube. Stopping the foaming for free
drainage, as well as removing foam above the injection point,
relieves the compression. This increase in L induces slight
changes in the prefactors cv and cw of (11) and (12).

Under the influence of gravity the free drainage profiles of
liquid volume fraction versus height evolve such that ε increases
monotonically from the top to the bottom of the foam at all times
(see Figure 5b). Liquid continues to drain from the foam, and the
profiles approach a steady state at long times.39

In contrast to forced drainage, where the front is moving down
the foam without changing its shape, the free drainage rear, the
region above the (uniform) main body, is getting wider with time
as it moves downward. We refer to the velocity of the half-
maximum point of the rear as the rear velocity, vr. The solid line
in Figure 8 shows the best power-law fit of vr versus εmain, and
the dashed line shows the expected rear velocity from the channel-
dominated foam drainage model.

A distinctive feature of the free drainage profiles is the “knee”
(Figure 5b), which indicates the transition region between the
main body and the draining foam above. The knee is measured
to be moving downward at a velocity of vk ≈ 1.5vr, which will be
discussed theoretically in section 4.2.2.

It is useful to track the rate at which the liquid volume fraction
decreases with time. However, as is obvious from the profiles in

(38) We will show later in section 4.1 that flow through channels
experiences a slipping boundary condition and is not Poiseuille-like.
However, in the channels lining the foaming tube wall a no-slip boundary
condition is partially imposed, which increases the viscous dissipation
of these channels and decreases the liquid velocity. We thus expect in
the front region that capillarity redistributes liquid from wetter channels
in the center of the foaming tube to drier channels at the periphery. (39) Princen, H. M.; Kiss, A. D. Langmuir 1987, 3, 36.

Figure 6. Front velocity vf, plotted against main body liquid
volume fraction εmain of the forced drainage wave, determined
from eq 10. The solid line is the best fit to power-law dependence
(11), and the dashed line is the channel-dominated forced
drainage prediction (rigid wall boundary condition).

Figure 7. Forced drainage front width plotted against main
body liquid volume fraction. The filled circles were used to
determine the best fit power law (solid line); see eq 12. The
dashed line is the prediction from channel-dominated foam
drainage theory.

wf ≈ cwεmain
dw cw ≈ 0.18 cm dw ≈ -0.57 (12)

Figure 8. Rear velocity of free drainage versus main body
liquid volume fraction. The solid line is the best power-law fit
to the data points, and the dashed line is the channel-dominated
foam drainage prediction.
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Figure 5b, the dynamics depends on time and position as well.
We fix the position at the injection point and plot in Figure 9 the
decreaseof εwithtime for fourdifferent free drainage experiments
with different main body volume fractions εmain. Although the
data cover only a small range in time, because the liquid volume
fraction quickly drops to immeasurably small values, it appears
that there is a rough power-law dependence with ε ∝ t-1.2. We
point out that the channel-dominated drainage equation applied
to free drainage40 predicts that ε ∝ t-2/3 for points close to the top
of the foam.

2.5. Pulsed Drainage. Pulsed drainage is the evolution of a
(small) finite volume of liquid (“pulse”) injected into a foam with
very low liquid content; the injected volume has an uncertainty
of (0.005 mL. As with free drainage, the position of the injection
needle marks the origin for the z-axis. The bolus is injected within
1 s using the syringe pump, and the end of the injection sets the
time t ) 0, which is known within (1 s. Gravity pulls the injected
liquid downward, and capillarity spreads the pulse in all
directions, as shown by the liquid volume fraction profiles in
Figure 5c. Convenient reference points of the profiles are the
peak height (maximum liquid volume fraction) εmax and peak
position zmax of the pulse.

Data for the decrease of εmax with time from four experiments
with different injection volumes are shown in Figure 10. Figure
11 shows the corresponding motion of zmax in time. Both figures
span one decade in pulse volume and several decades in time.
The larger pulses travel downward faster and by t ≈ 200 s have
moved outside the field of view, which ends at z ≈ 70 cm. The
two smaller pulses stay in the field of view longer; however, their
fluorescence signals are much weaker.

The data points fall on straight lines on the log-log plot, and
power-law behaviors

εmax ) cε tdε zmax ) cz tdz (13)

are observed, with dε ≈ -0.57 and dz ≈ 0.65. Again we observe
(small) deviations from the channel-dominated foam drainage
theory, which predicts dε ) -1/2 and dz ) +1/2.40

We verified that the total liquid content, which is determined
from the integral under the ε-profiles (cf. Figure 5c), is conserved
provided that the complete pulse remains within the field of
view of the camera. This also supports the validity of our intensity
calibration.

3. Energy Argument for the Foam Permeability
As discussed in section 1.2, our task will be the deriva-

tion of a generalized foam permeabilityk(ε) which accounts
for the viscous dissipation in both channels and nodes.

In order to derive k(ε), we consider the energy balance
over a “dog-bone” foam network unit (Figure 1c) with liquid
volume ν. All dissipation in the gas bubbles is neglected,
and we only consider dissipation in the liquid. If one
balances the rate of work per unit volume of foam done
by pressure and body forces against the rate of work done
by viscous stresses, one obtains (from the Stokes equation)

∫ν
um‚(Fg - ∇mpm) dν ) -∫ν

µum‚∇m
2 um dν (14)

where Fg is the gravitational force and pm and um are the
microscopic pressure and velocity field, respectively. The
rate of work per unit volume that drives the flow in the
network unit (left-hand side of (14)) can be rewritten as

where G ) Fg - ∇p is the macroscopic driving pressure
gradient (3). By dropping the subscript m, we indicate
that averages over the network unit have been performed,
making the resulting quantities macroscopic. The liquid
volume ν consists of two quarter-node contributions νn ≈
δnr3/2 and a channel contribution νc ≈ δεr2L; see discussion
after (2). Removing length and velocity scales from inside
the integral on the right-hand side of (14) yields

(40) Koehler, S. A.; Stone, H. A.; Brenner, M. P.; Eggers, J. Phys.
Rev. E 1998, 58, 2097.

Figure 9. Decrease of liquid volume fraction at the injection
point for five free drainage profiles, εmain ) 3.3 × 10-3, ..., 7.3
× 10-2. The lines show best fits to power-law behavior.

Figure 10. Peak volume fraction of the drainage pulse as a
function of time for pulse volumes Vliq ) 0.25, 0.14, 0.077, and
0.022 mL. Lines show best fits to power-law behavior.

Figure 11. Peak position of the drainage pulse as a function
of time for pulse volumes Vliq ) 0.25, 0.14, 0.077, and 0.022 mL.
Lines show best fits to power-law behavior.

u‚Gν (15)

µu2(δnr
2 ∫2νn/δnr3(um

u )‚r2∇m
2 (um

u ) 2dν
δnr3

+

δaL∫νc /δar2L(um

u )‚r2∇⊥m
2 (um

u ) dν
δar

2L
+

δar
2

L ∫νc /δar2L(um

u )‚L2∇|m
2 (um

u ) dν
δar

2L) (16)
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where ∇|m
2 is the longitudinal component of the Laplacian

along the channel, which has a typical scale of L-2, and
∇⊥m

2 is its transverse component with scale r-2. We have
indicated explicitly the scales of terms in order to
characterize the relative sizes of the sources of dissipation.
The first term in (16) is the rate of viscous dissipative
work of the flow in the two node regions, while the second
and third are respectively the rate of transverse and
(extensional and compressional) longitudinal dissipative
work in the channel.

Combining (14)-(16) yields

where ˜ denotes dimensionless quantities and û is the
unit vector in the direction of flow in the dog-bone network
unit. ν in (15) has been approximated by νc ≈ δar2L,
consistent with the small liquid volume fraction limit and
the approximations that lead to (2).

A foam is composed of many such interconnected
network units with different orientational angles θ
between the axis of the unit channel û and the direction
of the driving pressure gradient Ĝ. The average liquid
velocity of a region of foam is then given by the average
v≡ 〈u〉θ over all orientations. Averaging (17) over all angles
gives

As expected the average flow velocity is along G. The factor
of 3 results from the angular average 〈G‚ũ〉θ ) G ∫0

1cos2(θ)
d cos(θ) ) G/3.

Thus we have successfully made the transition from a
microscopic equation like (14) to a formula on macroscopic
scales equivalent to Darcy’s law, (3). If one compares (3)
and (18), the effective permeability of the foam is

where In, Ic⊥, and Ic| have been introduced as abbrevia-
tions for the absolute values of the corresponding dimen-
sionless dissipative work integrals in (18). The second
approximation in (19) uses r(ε) from (2) to arrive at an
expression for k(ε). An explicit calculation of these
dimensionless integrals in general is quite difficult, and
beyond the scope of this work, except for the simple case
of no-slip channel walls (i.e. Poiseuille-like flow) as we
discuss in the next section. Nonetheless we will treat In,
Ic⊥, and Ic| as dimensionless numbers that for a given
foam are independent of ε and L.

3.1. Boundary Conditions. The relative contribution
of each of the three terms in eq 19 to the permeability of
a foam is influenced by the relative liquid volume in the
channels and nodes and also is crucially dependent on the
boundaryconditionsat thegas/liquid interfacewhichaffect
the dimensionless integrals In, Ic⊥, and Ic|.

The original foam drainage model19,23 is based upon a
no-slip (i.e. zero-velocity) boundary condition, making the
flow in the channels Poiseuille-like. The second term of
(19) then makes the dominant contribution to k(ε) because
r , L, and the permeability is

From numerical calculations for flow through a rigid,
straight channel with a scalloped-triangle cross section
(see Figure 1b) it follows that5,7 K1 ≈ 6.3 × 10-3. Equation
20 is indeed the proportionality k(ε) ∝ ε inferred from the
physical argument discussed in section 1.3. As the
dissipation in the nodes is negligible here, we call the
foam drainage equation resulting from (7) and (20)
channel-dominated. In its one-dimensional form, (7) for
rigid gas/liquid interfaces can be written as

where the +z axis points along the direction of gravity.
Two arguments have been made to support the no-slip

boundary condition. The first is based upon the assumption
that the liquid in the faces is essentially stationary. Any
motion of the channel walls results in a surface shear
against the rigid faces, which is resisted by the surface
viscosity. If the surface (shear) viscosity is large, the
surface mobility is low, and the channel boundaries are
approximately rigid. Kraynik4 proposed that the surface
shear viscosity µs should fulfill µs J 10rµ in order to justify
the assumption of rigid walls. The surface viscosity is
highly dependent on the surfactant species and concen-
tration, and unfortunately, there is considerable uncer-
tainty in the measured values of µs even for well-defined
surfactant systems such as aqueous solutions of SDS.41

The range of typical values µs ∼ 10-4-10-2 g/s 42 allows
for violations of the “Kraynik criterion” for large enough
r.

A second argument in favor of a no-slip interface is that
the liquid flow through the channels will shear surfactants
off the top portion of the channel surface and push them
toward the bottom of the channel. If the diffusion and
adsorption times for surfactants in the bulk to replenish
the surfaces are large, then a surfactant concentration
gradient in the direction of the downward flow is created.
This sets up a surface (Marangoni) stress that will oppose
the downward flow of the surface and so reduce the surface
velocity. Again, it is difficult to assess a priori the time
scales of exchange of surfactant between surface and bulk.

An alternative physical limit to consider is the case of
very small surface stresses,5 which should be valid for low
surface viscosities, mobile faces, and small surfactant
concentration gradients along the surface. We remind the
reader that the injected liquid in our experiments is the
same soap solution used to generate the foam, so that the
injection will not automatically set up any surface stresses.
If, in addition, the surfactant molecules adsorb and desorb
from the surface quickly enough to equilibrate on the time
scales of the flow, surfactant concentration gradients
should be small and the surfaces would be nearly stress-
free. Indeed, when comparing low molecular weight

(41) Buzza, D. M. A.; Lu, C.-Y. D.; Cates, M. E. J. Phys. II 1995, 5,
37-52.

(42) Shah, D. O.; Djabbarah, N. F.; Wasan, D. T. Colloid Polym. Sci.
1978, 256, 1002.

k(ε) ) K1L
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surfactants such as SDS to surface active proteins, Wilde
et al.22 describe the interfaces of the former as highly
mobile.

In the case of mobile interfaces, the flow in the channels
is pluglike with some degree of extension/compression
toward the top and bottom ends of the channel where the
cross-sectional area varies (see Figure 1b,c). Thus, in
contrast to the rigid-wall case, Ic⊥ is not necessarily the
dominant term. However, even for a stress-free wall with
perfect slip, there will be dissipation in the nodes due to
the merging, mixing, and bending of the flow (see the
Introduction and Figure 1b; laminar viscous flow in curved
channels is referred to as Dean flow43). The first term of
(19) will then dominate (the third term is negligible
because L . r, as before), and the permeability becomes

which is in agreement with the force balance in section
1.3. The permeability coefficient K1/2 is determined by the
geometry of the node walls and the flow field inside the
nodes.44 We have to caution, though, that experiments
varying bubble size suggest a slight dependence of K1/2 on
L not explicitly indicated in (22). We believe this weak
L-dependence may arise either from interfacial rheology
or from bubble deformations due to hydrostatic pressure
variations. We are not aware of any calculation of the
dimensionless dissipation integral In; however an ex-
perimentally deduced value is reported in section 4.1.
Because of the dominance of node dissipation we call the
equation obtained from (7) with the foam permeability
(22) the node-dominated foam drainage equation

given here in its one-dimensional form projected onto the
z-axis. Note that the exponents in (23) differ from those
in (21) which is due to the change in the permeability’s
dependence on ε (cf. (20) and (22)).

The approach assuming moving, stress-free walls does
not seem unrealistic considering that it has been known
for some time that the gas/liquid interfaces in a foam do
not have to be rigid. In experiments involving soap films,
observers have distinguished between rigid and (simple
or irregular) mobile films.13 In our foam system we visually
observe motion in the faces, similar to that described by
Leonard and Lemlich.7

4. Analysis and Comparison to Experiment
Armed with a generalized theory for foam permeability

(section 3) and data from three types of experiments
(section 2), we now proceed to discuss the dynamics of
foam drainage in more detail. We begin with forced drain-
age and show that our data supports the node-dominated
model. In subsequent sections we use the node-dominated
equation (23) to analyze and elucidate the experimental
results for free and pulsed drainage from sections 2.4 and
2.5. The dynamics of the channel-dominated theory has
been described in a previous publication.40

4.1. Forced Drainage. The natural decomposition of
the traveling wave profile into a well-drained region, front

region, and main body region (cf. section 2.3 and Figure
5a) sets three characteristic scales for a particular
experiment: (i) a length scale, proportional to the front
width wf, (ii) a velocity scale proportional to the front speed
vf, and (iii) the liquid volume fraction of the main body,
εmain. These characteristic scales are determined by
physical parameters, such as surface tension, density,
gravitational acceleration, and viscosity as well as ex-
perimental parameters such as liquid flux and bubble size.
We will later use these scales to normalize experimental
data as well as computational results.

To arrive at a theoretical description of forced drainage,
we make the following ansatz for a traveling volume
fraction profile, ε(z, t) ) ε(s ≡ z - vf t); i.e., we transform
into a frame of reference moving with the drainage wave
speed vf. Using this ansatz in the generalized foam
drainage equation (7), integrating once with respect to s
and using the boundary condition ε(∞) ) 0 yields

In the main body region of the wave above the front, the
liquid volume fraction is constant, ε(-∞) ) εmain. The
ε-derivative in (24) then vanishes, and a simple relation-
ship between permeability and volume fraction results,

where the second equality follows from the experimentally
observed power-law behavior (11). Comparison of the
measured dv ≈ 0.6 with the channel-dominated (i.e. “no-
slip”) approximation (20), k(ε) ∝ ε, and the node-dominated
(i.e. “no-stress”) approximation (22), k(ε) ∝ ε1/2, shows that
the permeability is closer to being dominated by the nodes,
at least for the aqueous foams used here. In particular,
from (22) and (25) the model predicts that the forced
drainage velocity is

with K1/2 defined in (22). Since we are unable to compute
K1/2, we determine it from the experimental data for vf
(Figure 6). In order to obtain a controlled comparison to
node-dominated theory, however, we must not use the
original fit (11) with dv ≈ 0.60, but instead perform a best
fit of the measured data to (26), where dv ) 1/2 exactly. The
result is

which, by comparison to (26), identifies the theoretical
velocity scale VF with the measured c̃v. With F ) 1 g cm-3,
g ) 981 cm s-2, µ ) 0.01 g cm-1, and L ) 0.15 cm, we
obtain45 K1/2 ≈2.3×10-3. Using eq 22 and approximating28

δn ≈ 0.3 gives In ≈ 400 for the dimensionless node

(43) Leal, G. Laminar Flow and Convective Transport Processes;
Butterworth-Heinemann: Boston, MA, 1992.

(44) The convention we adopt for the subscript of the permeability
coefficient is k(ε) ) KøL2εø; ø ) 1/2 for node-dominated drainage, and ø
) 1 for channel-dominated drainage.

(45) It is instructive to consider the permeability of an fcc-close-
packed bed of spheres (εfcc ≈ 0.26), which has the same geometry as a
monodisperse foam at the critical volume fraction ε ) εfcc composed of
spherical bubbles. In our notation, kfcc ≈ (2a2)/(9(1 - εfcc)435) for spheres
of radius a.30 The equivalent sphere radius for the foam follows from
the volume of a cell (27/2L3 ) 4πa3/3) to be a ≈ 1.4L. Substituting for
a yields kfcc ≈ 1.4 × 10-3L2. Similar permeabilities are predicted by both
foam drainage models: the node-dominated model (mobile gas/liquid
interfaces) predicts k(εfcc) ≈ 1.2 × 10-3L2, and the channel-dominated
model (rigid gas/liquid interface) yields k(εfcc) ≈ 1.6 × 10-3L2. Although
both foam drainage models are strictly valid for dry foams only (i.e. ε
, εfcc), this calculation shows that the modeled permeability is still
reasonable even in the limit of wet foams.

k(ε) ) K1/2L
2
ε

1/2 K1/2 ≡ 2δa

3δε
1/2δnIn

(22)

µ∂ε

∂t
+ K1/2FgL2∂ε

3/2

∂z
-

K1/2δε
1/2Lγ

2
∂

2
ε

∂z2
) 0 (23)

-µvf + k(ε)(Fg -
δε

1/2γ

2Lε
3/2

dε

ds) ) 0 (24)

k(εmain) )
µvf

Fg
≈ µcv

Fg
εmain

dv (25)

vf ) VFεmain
1/2 VF ) K1/2FgL2/µ (26)

vf ≈ c̃vεmain
1/2 c̃v ≈ 5.12 cm/s (27)
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dissipation integral in (19), compared with Ic⊥ ≈ 310 for
the channel-dominated theory.

Is node-dominated drainage a valid description for all
of our different types of experiments? Much work has been
devoted to the channel-dominated foam drainage model
with rigid walls.8,40 We will focus in the present work on
the other limit of plug-flow in the channels and dissipation
in the nodes. Although the data for the foam we study
here do not exactly match the predictions of either limit,
we will show in the remainder of the paper that the
agreement with the node-dominated model of foam
drainage is much better.

We continue our analysis of the node-dominated model
by shifting our focus from the uniform main body to the
front region of the forced drainage wave. In the front region
ε decreases from εmain to 0, so that the derivative (capillary)
term of (24) becomes important. Using (22), (24), and (26)
yields a nonlinear ODE for ε(s),

A characteristic (capillary) length scale for a foam is

Defining the new variables s̃ ) sεmain
1/2 /ZF and ε̃ ) ε/εmain

reduces (28) to

Imposing the boundary condition ε̃(-∞) ) 1 leads to the
solution

which is formally the square of a Fermi function. This
shows analytically that the node-dominated foam drainage
equation (as well as the channel-dominated one8) admits
a solitary wave solution with unchanging wave profile.
This should not be too surprising considering the similarity
of equations like (21) and (23) with the Burgers equation
and other well-known PDEs with soliton solutions.46

The dimensionless width of the front region ∆s is defined
as the distance between the points in the profile where ε̃
) 0.8 and ε̃ ) 0.2, to match the experimental criterion (see
section 2.3). Using (31), we find ∆s ≈ 4.7, making the
dimensional front width

We note that any equation based upon (1) and (7) predicts
that the front width will scale with εmain

-1/2 . The measured
front width exponent dw ≈ -0.57 is in fairly close
agreement. A ring-tensiometer measurement gives γ ≈
32 dyne/cm47 and substituting into (32) predicts a front
width prefactor cw ≈ 0.21 cm. For consistent comparison
to experiment, we again replace our best fit (12) by a fit
with the theoretical exponent dw ) -1/2 and find

The best-fit prefactor, c̃w, is much closer to the node-

dominated prediction than to the channel-dominated
prediction of 0.084 cm. This fit also provides us with an
experimental value for the length scale ZF, as ZF ) c̃w/∆s
≈ 0.0545 cm.

The analytical solution (31) can be compared with the
complete measured profile of the wave front at various
εmain by rescaling using ZF and εmain. Figure 12 shows that
all data collapse onto a universal curve, in excellent
agreement with the theoretical prediction. Thus, all the
spatial and temporal characteristics of forced foam drain-
age are captured accurately within the node-dominated
model.

4.2. Free Drainage. Though the free drainage experi-
ment is conceptually simple, a theoretical description of
this process is considerably more involved than for forced
drainage. This is largely due to the more complicated
boundary conditions for ε, namely, zero flux at the top of
the foam and ε ) εcrit at the bottom, where the foam is in
contact with the soap solution and the bubbles are
spherical. The latter condition uses the critical volume
fraction εcrit, which corresponds to the void fraction of close
packing of spherical bubbles. In our experiments, the
bottom boundary is far below the field of view of the
camera, so that we do not have to deal with it explicitly.

It is convenient to divide a free-draining foam into two
overlapping regions that grow with time: the rear region
which contains the top of the foam and the knee region
where the liquid volume fraction plateaus to εmain (cf.
section 2.4). The knee is moving downward with a constant
velocity vk, which experiments show to be greater than
the front velocity of forced drainage vf for the same εmain.
It is also greater than the rear velocity vr, so that the rear
region grows over time (see Figure 5b).

4.2.1. Rear Region. At time t ) 0, a uniform profile
ε(z, 0) ) εmain has been established, and the flux of liquid
injected into the foam at z ) 0 is turned off. The no-flux
top boundary condition requires that the liquid velocity
v ) 0 at z ) 0 for t > 0 (otherwise the foam would be
shrinking in height). For node-dominated drainage this
yields

which follows from (3), (5), and (22).

(46) Grundy, R. E. IMA J. Appl. Math. 1983, 31, 121-137.
(47) A common value reported in the literature for the surface tension

of SDS is 30 dyne/cm.36

Figure 12. Collapse of the front profiles of forced drainage
waves for seven different volume fractions εmain (symbols) onto
a universal curve. The solid line is the analytical result of (31)
which predicts the shape of the wave profile from the node-
dominated foam drainage eq 23. The curves have been aligned
such that the coordinate z - z0 ) 0 coincides with the center
of the front region, where we select a value z0 for each data set.

Fgε
3/2 -

δε
1/2γ

2L
∂ε

∂z
) 0 (z ) 0) (34)

dε
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) 2LFg

δε
1/2γ

(ε3/2 - εmain
1/2

ε) (28)

ZF )
δε

1/2γ
2LFg

(29)

dε̃/ds̃ ) ε̃
3/2 - ε̃ (30)

ε̃(s̃) ) (1 + es̃/2)-2 (31)

wf ) ∆sZFεmain
-1/2 )

∆sδε
1/2γ

2LFg
εmain

-1/2 (32)

wf ≈ c̃wεmain
-1/2 c̃w ≈ 0.256 cm (33)
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We define characteristic time and length scales

which are the same as in the forced drainage problem
discussed before (see section 4.1); i.e., TF ) ZF/VF )
c̃w/(∆sc̃v) ≈ 0.0106 s. To nondimensionalize the node-
dominated foam drainage equation (23), we transform
variables according to ε̃ ) ε/εmain, ú ) zεmain

1/2 /ZF, and τ )
tεmain/TF and arrive at the dimensionless foam drainage
equation

In order to solve (36) numerically, we have to impose a
second boundary condition on ε in addition to (34). Here
we are only interested in the top region of the profile far
above the foam/liquid interface, so we impose ε̃(∞, t) ) 1
at the bottom of our simulation. Using the IMSL routine
DMOLCH we obtain the drainage profiles shown in Figure
13 by the connected open symbols. We have plotted the
results in rescaled coordinates, because we can obtain a
self-similar solution in this coordinate system as well. In
the spirit of our previous work,40 we note that a trans-
formation of variables according to

balances all the terms in (36). This leads to self-similar
solutions φ(σ) obeying the ordinary differential equation

with ′ denoting differentiation with respect to σ. The
leading-order solution of (38) is

which is valid for σ e 3τ1/2/2 (otherwise ε̃ > 1). The top
no-flux boundary condition (34) transforms into

To solve the ODE (38), we use a shooting algorithm to
ensure that the solution asymptotes to the parabolic
approximation (39) for the largest σ ) σmax of the
integration range (typically, σmax ∼ 10). The resulting
solution is plotted as open circles in Figure 13. It is
approached by the solution of the full PDE at large τ. At
any given finite time, however, the rescaled profile reaches
its maximum at the knee (to be discussed in the next
section) and plateaus at a value of φ ) τ.

The parabolic approximation (39) can be rewritten in
(ε̃, ú, τ) space as

Note that only for very long times are (39) and (41) good
approximations, because only then is their range of validity
(τ1/2 , ú < 3τ/2) appreciable.

Figure 13 also shows rescaled experimental data (filled
symbols) in the self-similar coordinates ε̃τ versus úτ-1/2.
The length and time scales are determined from the forced
drainage experiment with the same εmain, as discussed in
the previous section. The rescaled experimental data are
in very good agreement with the simulations at the
corresponding dimensionless times. This figure shows that
the rear portion of the experimental profile is indeed
parabolic in rescaled coordinates (see eq 39) and not linear,
ε ≈ ú/2τ, as predicted by the channel-dominated foam
drainage equation.40

Next, we return to the issue raised in section 2.4
pertaining to Figure 8, which shows that the measured
rear velocity is considerably higher than that predicted
by the channel-dominated model. From eq 41 it is easy to
see that the half-maximum at the rear is at a position ú
given by

It follows that the predicted rear velocity vr )
(3/23/2)VFεmain

1/2 ≈ 1.06 VF. The measured rear velocity of
free drainage can be fitted to the node-dominated formula
to yield vr ≈ 6.13 εmain

1/2 cm/s, which is in fairly good
agreement with the prediction above using VF ) c̃v; see
(27). The predicted rear velocity is about 10% below
measurements, which can be attributed to the slightly
larger bubbles of the free drainage experiment as described
in section 2.4.

Figure 9 previously illustrated that at a fixed position
in space near the top of the foam free drainage proceeds
as ε ∝ t-1.2 and not ε ∝ t-2/3 as predicted by the channel-
dominated model.40 However, this measurement is con-
sistent with the node-dominated foam drainage equation.
Close to the top, for σ ) úτ-1/2 , 1, it follows from (37) that
ε̃ ≈ τ-1φ(0). For long enough times, then, ε̃ ∝ τ-1 is valid
for a considerable range of ú values. Note that the initial
decrease in volume fraction is faster, as for times τ1/2 ,
ú the parabolic approximation (41) holds, and ε̃ ∝ τ-2.

4.2.2. The “Knee”. The main body of the drainage
profile with uniform ε ) εmain begins at the knee, which
is moving downward in time. Using similar arguments as
for the rear velocity (42), we expect the center of the knee
(intersection of the rear and main body regions) to be at
ú ) 3τ/2 in dimensionless coordinates. This means that
the knee velocity vk is predicted to be vk ) x2vr (cf. (42)),
which agrees well with the measured vr (section 2.4). In

Figure 13. Rear region of simulated and experimental free
drainage profiles in rescaled dimensionless coordinates for
successive times, starting with a uniform profile. Filled-in
symbols are measurements for εmain ≈ 0.0077, rescaled using
a forced drainage experiment, as explained in the text. All open
symbols are simulations: the open circles show the ODE
solution (38), and symbols connected by dashed lines are
simulations of the full PDE (36) with the no-flux top boundary
condition (34). The dimensionless times τ correspond to the
measured times t for the experimental profiles. For long times
the profiles collapse onto the ODE solution (38).

φ
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ε̃ ≈ (2ú/3τ)2 (41)

(2ú
3τ)2

) 1
2

w ú ) 3τ
23/2

(42)

TF )
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contrast the channel-dominated foam drainage theory
predicts that the knee velocity is twice the rear velocity.

For ú . 3τ/2, ε̃ should saturate to 1, and so we seek a
self-similar solution to the dynamics in the transition
region about ú ∼ 3τ/2 of the form

Inserting (43) into (36) and expanding ε̃3/2 up to second
order in τ-1/2f(s), we obtain

In the long-time limit, the error to this approximation
becomes vanishingly small. Collapsing the numerical
simulations of the PDE in this fashion validates the ansatz,
as shown in Figure 14. Integrating (44) once gives

where the integration constant is set to zero because
f(+∞) ) 0. The solution to (45) is

The constant C should be chosen to match (46) onto the
parabolic approximation, ε̃≈ (2ú/3τ)2 from eq 39. To leading
order this requires f(s) f -4s/3 for s f -∞. From (37) and
(43) one obtains s ) σ - 3τ1/2/2, so that at large enough
τ the conditions σ . 1 and s , -1 can indeed be fulfilled
simultaneously. Thus, we find C ) 3xπ, and the corre-
sponding solution (46) is plotted as open circles in Figure
14. Again, the solutions of the PDE (36) approach the
self-similar solution in rescaled (f,s) coordinates for long
times; see Figure 14.

We repeat this rescaling for our experimental data as
shown by the solid symbols in Figure 14. As in the previous
section, the profiles agree very well with theory. The small
mismatches between the simulated and measured profiles
can be attributed to uncertainties in the characteristic
time and length scales. For the longest time, 121 s, the
foam has drained considerably, and the knee no longer is

in the field of view of the camera. Thus the rescaled data
points do not extend to s ) 0 as is the case for the profiles
at shorter times.

4.3. Pulsed Drainage. We now discuss the one-
dimensional dynamics of a pulse with finite liquid volume
Vliq injected into a foaming tube of cross-sectional area A.
We seek a solution to the dimensionless foam drainage
equation (36), with the additional constraint that the
dimensionless liquid volume be unity, ∫ ε̃ dú ) 1. This is
achieved by choosing the scales

The following identities relate the experimentally obtained
scaling factors (TF, ZP) of forced and free drainage to the
pulsed drainage scaling factors (TP, ZP):

We can compute TP and ZP in this way from forced drainage
because the same kind of foam is used for both experiments
(L ) 0.15 cm).

The pulse is composed of three sections (see Figure 5c):
(i) The first is the rear region, where the pulse profile
connects to the dry foam above and which is similar to the
rear region of free drainage (cf. section 4.2.1). We formally
define this region as the range ú ) z/ZP < 0, although the
solutions we present will remain valid for some interval
of positive ú as well. (ii) Next there is the middle region,
in which the volume fraction grows from ú ) 0 to the peak
of the pulse. (iii) Finally, there is the downward moving
front region below the peak. The latter has characteristics
similar to the advancing forced drainage front (see section
4.1). In each of these regions we discuss asymptotic
solutionsobtained fromthenode-dominated foamdrainage
theory and compare them with our experimental mea-
surements.

4.3.1.RearRegion.Here ε is small, so we expect surface
tension and gravity to be of equal importance, as in the
rear region of free drainage. The same self-similar ansatz
(37) used before balances all three terms in the foam
drainage equation and transforms it into the ODE (38).
We expect the upper region of the pulse to develop in this
self-similar fashion, and only toward the pulse’s peak
should deviations from the self-similar behavior occur. In
Figure 15 a simulation (open symbols connected by dashed
lines) of an initially Gaussian pulse of unit volume and
initial width of unity is plotted in (σ, φ)space (the variables
of (38)). The collapse of the rear region is very good.

Figure 15 also shows experimental data (filled symbols
connected by solid lines) for a Vliq ) 0.077 mL pulse plotted
in (σ, φ) space and illustrates the self-similar behavior of
the rear of the pulse. Qualitatively the agreement with
the simulations is good; however, on a more quantitative
level the length scale ZP is too large by a factor of about
1.3-2 to achieve excellent agreement. As the deviations
seem to increase over time, they are presumably due to
the slight differences between the experimentally mea-
sured exponents of pulse dynamics (e.g. the pulse maxi-
mum coordinate vs time; cf. Figure 11) and the theoreti-
cally predicted values. These discrepancies will be
discussed further in the following section. Note also that
the only free parameter in our theoretical description is
K1/2, which has been determined from the forced drainage

Figure 14. Free drainage profiles in the transition region
(about the “knee”) for experiment and simulation at successive
times in rescaled (f, s) coordinates; see (43). Filled-in symbols
are measurements for εmain ≈ 0.0077, rescaled according to the
preceding forced drainage experiments that create uniform
profiles, as described in the text. All open symbols are
simulations: the open circles show the ODE solution (46), and
connected symbols show simulations of the full PDE (36) with
the no-flux top boundary condition (34), at times τ corresponding
to experiment.
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measurements, so that the theoretical predictions for free
and pulsed drainage are parameter-free.

4.3.2. Middle Region. While a rescaling as displayed
in Figure 15 may put emphasis on the rear region, it is
important to realize that the vast majority of the liquid
volume resides in the middle region, whose dominance
becomes ever larger as time increases. Thus, the gravi-
tational term of the foam drainage equation dominates
and the surface tension term may be neglected. As with
free drainage, the parabolic profile ε̃ ≈ (2ú/3τ)2 then is an
approximate solution. The volume constraint, however,
limits the extent of the parabola requiring

from which we conclude the power laws

for the location and height of the pulse peak, respectively.
In accordance with these scalings, we use the coordinates
úτ-2/3 and ε̃τ2/3 to collapse experimental and simulated
profiles as shown in Figure 16. In the long time limit, the
peak location should asymptote toward úmax, and the peak
volume fraction should approach ε̃max. Because the surface
tension term was neglected in this approximation, the

asymptotic solution of a parabolic profile that abruptly
ends at úmax is approached only slowly, which can be seen
in the four simulated profiles.

Although the initial liquid volume distribution is not
controlled to be Gaussian in experiment as assumed for
the simulation, the comparison with the computations is
quite favorable and shows that the data collapse in a
fashion similar to the simulation. At short times
(t ∼ 10 s) the agreement between theory and experiment
is quite good, and at long times (t ∼ 300 s) the rescaled
experimental pulses are within a factor of 2 of the
simulated pulses.

To compare the predictions of (50) to experiment in more
detail, we attempt to describe the simulated data by the
power laws

where dú and dε are now defined locally for a given time
τ as the logarithmic derivative of úmax and ε̃max with respect
to τ, i.e. dú ) ∂log(úmax)/∂log(τ) and dε ) ∂log(ε̃max)/∂log(τ).
Only for very large τ do the simulated peak positions and
volume fractions approach the behavior predicted by (50)
as shown by Table 1. The convergence of the prefactors
to the projected values is even slower than that of the
exponents.

Table 2 shows that the measured exponent for the peak
position dú stays below the asymptotically predicted value
of 2/3, while the simulated values in Table 1 are all larger
than 2/3 for finite times. This explains the discrepancies
seen in Figure 16: as time proceeds, the peak positions,
rescaled with the exact theoretical exponent dú ) 2/3, drift
to the left for the experimental data (with effectively
smaller exponents) and to the right for the simulations
(which have larger exponents). Since the experimental
foam has a permeability of k(ε) ∝ ε0.60 and not k(ε) ∝ ε1/2,
we expect dú ) 0.625.46 The effect is less pronounced for
the scaling of ε, where both experiment and theory yield
dε > -2/3. The shift between experiment and theory in the
previous Figure 15 can be explained along the same lines:
while all peaks move to the right here as time increases
(because of the different rescaling), the measured data do
so considerably slower than the simulation. Note that the

Figure 15. Collapse of the rear regions of simulated and
experimental profiles for pulsed drainage using (37). Experi-
mental profiles have filled symbols, and the open symbols show
simulations for the corresponding dimensionless times. The
liquid volume is Vliq ) 0.077 mL, and the tube area A ) 1.27
cm2. The dips before the peaks of some of the experimental
profiles can be attributed to the glaring reflection from the UV
lamp off the foaming tube.

Figure 16. Collapse of pulsed drainage profiles in the middle
region where surface tension has been neglected (see (50)). Filled
symbols show data for a Vliq ) 0.077 mL pulse; open symbols
are the corresponding simulated profiles.

∫0

úmax(2ú
3τ)2

dú ) 4
27

úmax
3

τ2
) 1 (49)

úmax ≈ 3(τ/2)2/3
ε̃max ≈ (2/τ)2/3 (50)

Table 1. Asymptotic (Long-Time) Approach of the
Relations (50) of Peak Position and Peak Height

Obtained from a Numerical Simulation (See Text)a

τ 102 103 104 105 106 107 ∞

dε -0.51 -0.53 -0.57 -0.61 -0.64 -0.65 -2/3
dú 0.75 0.74 0.72 0.70 0.69 0.68 2/3
cε 0.29 0.33 0.44 0.67 0.93 1.15 1.59
cú 0.74 0.80 0.90 1.10 1.34 1.53 1.89

a See (51) for the definitions of dε, dú, cε, and cú.

Table 2. Pulse Scales EP, TP, and ZP for Different
Injection Volumes Vliq Used in the Experimentsa

Vliq
(mL) εP TP (s)

ZP
(cm) dε dú cε cú τmax

0.25 13.2 8.1 × 10-4 0.015 -0.56 0.64 0.74 1.16 6.2 × 105

0.14 4.23 2.5 × 10-3 0.027 -0.61 0.67 0.93 0.92 2.0 × 105

0.077 1.25 8.5 × 10-3 0.049 -0.57 0.64 0.72 0.96 5.2 × 104

0.022 0.10 0.11 0.17 -0.55 0.63 0.50 0.80 3.6 × 103

a The fifth and sixth columns are the measured exponents of the
power-law behaviors for the peak height and peak position (see eq
13). The seventh and eighth columns are the prefactors of the peak
volume fraction and position in dimensionless units to be compared
with the predictions from Table 1. The last column is the duration
of the experiment in dimensionless time; τmax ≡ (maximum
experimental time)/TP.

úmax ≈ cúτ
dú ε̃max ≈ cετ

dε (51)

A Generalized View of Foam Drainage Langmuir, Vol. 16, No. 15, 2000 6339



simulations also show that the asymptotic behavior is
observed only for very long times (Table 1), and in
particular, the peak height requires very long times to
reach the asymptote ε̃max ∝ τ-2/3. Furthermore, in experi-
ments the initial shape of the pulse is not controlled and
most likely not Gaussian. With a more irregular initial
condition, it may take longer to establish self-similar
behavior. Finally, the experimental foam permeability is
measured to be k(ε) ∝ ε0.60 and not ∝ ε1/2 which leads to
dε ≈ -0.625.46

The experimental dimensionless prefactors of Table 2,
cú and cε, are generally about a factor of 2 smaller than
the prediction of (50). But for times τ ∼ 105 even the
prefactors for simulations starting with a Gaussian profile
are only about half the asymptotic value (see Table 1).
This emphasizes the extreme slowness of the asymptotics
for the middle collapse.

4.3.3. Front Region. Here we treat the advancing front
region of the pulse that stretches from εmax to the dry foam
below. In dimensionless variables this region is moving
downward as úmax ≈ 3(τ/2)2/3 (see (56)), and we make the
ansatz that it is spreading at a rate of τλ with λ > 0. We
try a self-similar solution of the form

Substituting into (36) shows that λ ) -1/3 balances the
largest convective term, the gravitational term, and the
surface tension term to O(τ-4/3), while two out of the three
terms from the time derivative are of magnitude O(τ-5/3)
andbecomenegligibleat longtimes.Theresultingordinary
differential equation for f is

where the first term stems from the convective time
derivative, the second from the advective (gravitational)
term, and the third from the diffusive (surface tension)
term. We integrate (53) once, which after a substitution
of variables, s̃ ) 21/3s, and using the boundary condition
f(+∞) ) 0 gives

which is the same ordinary differential equation that
describes the advancing front of forced drainage and whose
solution is (31). Figure 17 shows the asymptotic collapse
of the bottom of the pulse for both experimental and
simulated data using the self-similar ansatz (52). The
agreement with simulations is good, although some scatter

is present. The solution (31) is indistinguishable from the
longest time simulation.

5. Concluding Remarks

We have developed a new method for measuring the
liquid volume fraction of foams using fluorescence. It is
possible to obtain forced drainage data spanning more
than two decades in volume fraction using this technique
and extract power-law behavior for the speed and width
of the forced drainage wave. For free drainage we
measured dynamics over ∼100 s, and for pulsed drainage
we were able to track the dynamics up to ∼500 s.

A generalized foam drainage equation has been derived
which takes into account the contributions to viscous
damping originating from flow in the nodes as well as in
the channels. The foam is modeled as a porous medium
with a permeability that varies dynamically with the liquid
volume fraction. The foam permeability is governed by
the contributions to viscous dissipation in the channels
and nodes of the liquid network.

There are two limiting cases of this generalized equa-
tion: one with a no-slip interface boundary condition,
which is the assumption of the original foam drainage
equation, and one with a no-stress (ideally mobile)
interface. The former, where dissipation is channel-
dominated, is consistent with experimental results from
publications by Weaire and co-workers.8,20,34 The latter,
for which nodes dominate the dissipation, agrees very well
with all the measurements presented here using SDS
surfactant, as well as earlier measurements using Dawn
dish detergent.5

The measured permeability of the foam in the present
experiments has a power-law behavior somewhat different
from the node-dominated model (k ∝ ε0.6 rather than
k ∝ ε1/2). However, the deviations are small and the node-
dominated limit reproduces the results of our forced, free,
and pulsed drainage experiments with good accuracy,
whereas the channel-dominated theory fails to explain
our data. The only free parameter in our treatment of the
node-dominated foam drainage model is the permeability
prefactor K1/2 which is taken from the measured depen-
dence of the front velocity against ε for forced drainage;
see eq 26. The complex foam geometry prevents us from
directly computing K1/2, e.g. using a boundary integral
method with no-stress boundary conditions. Allowing
additional dissipation in the channels would add a
component to the permeability and increase the effective
exponent of the permeability somewhat (see eq 19), thus
coming closer to the experimental results.

The node-dominated drainage model provides a very
good description of the front width of forced drainage as
well as the universal shape of the ε profile (see (31)), onto
which all experimental data can be collapsed after proper
rescaling.

Free drainage experiments are well described by node-
dominated drainage as well. Rescaling coordinates ac-
cording to the theoretical descriptions derived from the
node-dominated foam drainage equation collapses both
the rear and transition (“knee”) regions of free drainage
profiles (see Figures 13 and 14). In the asymptotic long-
time limit of free drainage, self-similar coordinates
transform the PDEs into ODEs, which have exact or
approximate analytical solutions. Note that here, rather
than focusing on the amount of liquid drained out of the
foam in free drainage, we describe the full dynamics of
the liquid volume fraction profiles.

Likewise, self-similar solutions are found for the three
scaling regimes of pulsed drainage profilessthe rear,

Figure 17. Collapse of the front region of pulsed drainage
profiles using (54): experimental data (filled symbols) and
simulations (open symbols) at corresponding times. The mea-
surements are for a pulse with Vliq ) 0.077 mL.

ε̃ ) (2/τ)2/3 f(s) s ) τλ(ú - 3(τ/2)2/3) (52)

f ′ - (f 3/2)′ + 2-1/3 f ′′ + O(τ-1/3) ) 0 (53)

f(s̃) - f(s̃)3/2 +
df(s̃)
ds̃

) 0 (54)
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middle, and front regions. The rear region has similar
dynamics to the rear region of free drainage (see (38)),
and the front region has a similar shape to the advancing
front of pulsed drainage (see (54)). We are able to collapse
the experimental data from these regimes onto universal
curves for long times (see Figures 15-17). The agreement
with theory is good especially when considering that, once
K1/2 is fixed, no other free parameters are used.

In conclusion, we propose a generalized foam drainage
theory of which the existing models are special cases and
experimentally find that foam drainage is governed by
dissipation in the nodes rather than in the channels, which
can be rationalized by assuming a no-stress boundary
condition at the gas/liquid interface. In fact, since we are
dealing with Newtonian fluids, we would expect that
qualitative differences in dynamical behavior, such as
different scaling laws, can only be attributable to changes
in the boundary conditions. Recent experiments by Durand
et al.21 suggest that both limits of the generalized foam

drainage equation can be approached for the same system
by altering the composition of the surfactant: adding
dodecanol to an SDS solution increases the surface
viscosity and changes the drainage behavior from node-
dominated to channel-dominated. Likewise, performing
forced drainage experiments with protein surfactants, we
find excellent agreement with the channel-dominated
model, which has no free parameters. These results
support the validity of a generalized theory of foam
drainage, as it has been presented here.
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Direct observation of ionic structure at
solid-liquid interfaces: a deep look into
the Stern Layer
Igor Siretanu1*, Daniel Ebeling1*, Martin P. Andersson2, S. L. Svane Stipp2, Albert Philipse3,
Martien Cohen Stuart1, Dirk van den Ende1 & Frieder Mugele1

1Physics of Complex Fluids Group and MESA1 Institute, Faculty of Science and Technology, University of Twente, PO Box 217,
7500 AE Enschede, The Netherlands, 2Nano-Science Center, Department of Chemistry, University of Copenhagen,
Universitetsparken 5, 2100 Copenhagen, Denmark, 3Van’t Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute,
Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.

The distribution of ions and charge at solid-water interfaces plays an essential role in a wide range of
processes in biology, geology and technology. While theoretical models of the solid-electrolyte interface date
back to the early 20th century, a detailed picture of the structure of the electric double layer has remained
elusive, largely because of experimental techniques have not allowed direct observation of the behaviour of
ions, i.e. with subnanometer resolution. We have made use of recent advances in high-resolution Atomic
Force Microscopy to reveal, with atomic level precision, the ordered adsorption of the mono- and divalent
ions that are common in natural environments to heterogeneous gibbsite/silica surfaces in contact with
aqueous electrolytes. Complemented by density functional theory, our experiments produce a detailed
picture of the formation of surface phases by templated adsorption of cations, anions and water, stabilized
by hydrogen bonding.

G
ouy1, Chapman2 and Stern3 laid the foundation for our understanding of the electric double layer by
describing the distribution of ions in the vicinity of charged interfaces using Poisson-Boltzmann theory.
The classical approach has been refined in many respects, including a variety of sometimes competing

microscopic effects, such as preferential binding to specific surface sites4,5, dispersive ion-substrate interactions6

and ion correlation effects7. More recently, molecular simulations have contributed additional insight, e.g. about
the hydration of ions and surfaces. In comparison, common experimental methods such as batch titrations,
electrokinetic and surface force measurements provide less direct information on the atomic scale. They integrate
laterally over rather large and frequently very heterogeneous surface areas and rely on a large number of
assumptions and empirical parameters to fit to theoretical models. Also, along the direction normal to the surface,
these techniques average information and attribute it to several of the levels in the electric double layer, based on
conceptual model assumptions. It is increasingly recognized8,9 that quantitative understanding of mineral-fluid
interface behaviour is limited because experimental techniques have not been able to capture the complex
structure of solid-liquid interfaces with resolution at nanometre scale, parallel and perpendicular to surfaces.

Atomic Force Microscopy (AFM) has recently been advanced to a stage that allows for imaging solid-liquid
interfaces at ‘true’ atomic resolution10–13. We have used small amplitude dynamic AFM to explore the surfaces of
synthetic nanoparticles of gibbsite (a-Al(OH)3)14 during exposure to a variety of electrolyte solutions. We chose
gibbsite because it can be synthesised reproducibly, to yield suspensions of essentially monodispersed particles.
Moreover gibbsite is a good model for some clay mineral surfaces15. Sorption of inorganic and organic ions to Al
(hydr)oxides, such as gibbsite, and to clay minerals is important for the transport of contaminants and nutrients
in the environment and kaolinite, a clay with one Al-OH surface has been reported to play a role in enhancing oil
recovery16,17. It has long been assumed that the doubly coordinated Al2OH groups on gibbsite basal planes are
inactive to deprotonation/protonation reactions and that surface charge and ion sorption are dominated by the
singly coordinated aluminol at edges18. Recently however, experimental8,19–21 and numerical studies21,22 have
suggested that missing information about structure at the submicrometre scale and the ratio of edge to basal
surface area might have compromised data interpretation.

With small amplitude dynamic AFM, we have collected the required high resolution insight needed for
addressing these questions, to directly ‘‘see’’ the structure of the ions adsorbed in the Stern layer and to observe
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changes in the pattern on the gibbsite basal plane as the contacting
solution is changed. We characterised the surfaces at two levels. First,
we used AFM spectroscopy at tip-sample distances of a few nano-
metres during exposure to solutions with a range of concentrations.
This provides data on effective surface charge, similar to those
obtained by f-potential measurements. Next, we recorded atomic
scale images at much smaller distances, which gives a direct view
of ion distribution within the Stern layer. Finally, using density
functional theory, we could confirm the stability of the ordering
observed by AFM and gain additional insight into the nature of
the bonding and how charge in the Stern layer changes with solution
composition.

Results
The gibbsite particles were deposited from a water-ethanol solution
(details in Methods Section) on silica wafers that had oxidised in air
to produce amorphous SiO2. The nanoparticles naturally sorb with
their {001} basal plane adjacent to the silica surface, exposing a Al-
OH surface to the solution. Typically, gibbsite particles attached
singly. Lateral dimensions ranged from several 10 to a few 100 nano-
metres and heights, from 1 to 20 nm (Fig. 1a). All experiments were
performed in slightly acidic (pH , 6) aqueous electrolyte and we
used silicon AFM tips. Tip surfaces had oxidised to amorphous silica
so they had the same character as the silica substrate.

We monitored the effective surface charge of the particles by mea-
suring the interaction force between the tip and sample as a function
of distance, in frequency modulation force spectroscopy mode23

(FM-AFM). Two dimensional interaction force maps24 (colour
coded in Fig. 1b) confirm that on the silica substrate, force increases
from zero (green) to repulsive values (red) of several hundred
picoNewtons at a distance of several nanometers, as expected for
two negatively charged surfaces in pure water. Over the gibbsite
particles however, attractive force (blue) indicates positive charge.
Compared with the silica substrate, there is more lateral variation in
the force on the gibbsite particles, indicating a larger degree of het-
erogeneity. Force decreases toward the particle edges. Force profiles
(Fig. 1b) also reveal the location of occasional crystal defects. The
local minimum in the attractive force near the center of this specific
particle is caused by a twin boundary. This is most easily seen in 2D
frequency shift images (Fig. S1b) that show a direct, qualitative mea-
surement of the interaction forces. The minimum force indicates that
the effective local surface charge essentially vanishes close to the
crystal defect. Typical tip radii of 20–30 nm in the spectroscopy
experiments imply a lateral average of a few thousand surface unit
cells.

Atomically resolved amplitude modulation images of the basal
planes display the periodicity of the gibbsite lattice (Fig. 1c). Close
to particle edges, we typically observe a higher density of atomic
steps. Frequently, these steps are decorated by adsorbed material

(Fig. 1c). Such defects are an important source of charge heterogen-
eity on gibbsite surfaces. Figure 2a shows line representations of force
spectroscopy data for areas such as Figure 1b under several concen-
trations of NaCl and CaCl2. Each data set was obtained with the same
cantilever and sample and care was taken to guarantee that tip shape
did not change when solutions were changed (see Supplementary
Information). On silica, the force curves (red in Fig. 2a) from a
number of sites collapse into a single narrow band for each ion
concentration. The interaction curves for gibbsite are more widely
spread, with rather weak forces along particle edges (green) and
strong attraction in the centre (blue). Our next discussion focusses
on the forces in the centre.

The qualitative trends in Figure 2a follow those expected from
standard electrostatic screening, i.e. force decreases as salt concen-
tration increases and the absolute force for divalent ions at the same
concentration is lower than for monovalent ions. To determine sur-
face charge, we compare the force curves to predictions from DLVO
(Derjaguin-Landau-Verwey-Overbeek) theory23 for electrostatic and
van der Waals forces (Supplementary Information). Consistent with
expectations, forces measured at small separations lie between the
two limiting cases of constant charge and constant potential because
of confinement induced charge regulation25. However, from the
asymptotic regime at large separation, we can readily extract unique
values for the effective surface charge, seff, for both the tip and
sample24. For the monovalent salts, seff on silica increases with
increasing salt concentration, whereas for the divalent salts, it
remains constant within experimental error (Fig. 2b). This trend
for monovalent salts agrees with the expected enhanced deprotona-
tion of silanol groups on the silica surface: ; SiOH R SiO2 1 H1 as
electrostatic screening increases. Fitting the data with a basic Stern
model (BSM)25 yields pKa ,7.5 for silanol deprotonation, in good
agreement with literature data25–29 (black line in Fig. 2b). This sup-
ports the effectiveness of our measurement and data analysis pro-
cedure. Weakly negative and essentially constant surface charge on
the amorphous silica surface in contact with Ca21 and Mg21 has
previously been interpreted in terms of cation adsorption27,30.

On gibbsite, seff was positive under all investigated conditions. In
solutions of monovalent salts, it increases monotonically from ,0.03
to ,0.1 e/nm2 as salinity increases. The surface unit cell has an area
of ,0.44 nm2 so these absolute values imply that at most, a few
percent of the unit cells carry a net charge. A more intriguing beha-
viour is observed for the divalent cations. Initially, seff increases
strongly with increasing salinity, reaching a maximum at 5 to
10 mM and then decreases to negligible values as concentration
reaches 100 mM. A slight but consistent specific ion effect was
observed in three separate experiments. In CaCl2 solutions, max-
imum charge is higher and it occurs at somewhat lower concentra-
tion than in MgCl2. While the constant increase in seff for
monovalent salts could be interpreted to result from protonation

Figure 1 | Atomic force microscopy (AFM) of gibbsite nanoparticles. (a), Topography images of gibbsite on an oxidised silicon wafer. (b), color-coded

2D force field generated from 100 tip-sample interaction curves in 20 mM NaCl at pH < 6. (blue: attractive force; red: repulsive force; green: zero force;

see scale bar) (c), Amplitude modulation atomic resolution image of a gibbsite particle in ultrapure deionised water. Left part: pseudohexagonal basal

plane structure (surface unit cell, a 5 0.87 nm, b 5 0.50 nm); centre: atomic step disorder on terrace edges; bottom right: edge of the particle.

www.nature.com/scientificreports
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facilitated by improved screening, as we see for silica9,31,32, the beha-
viour of divalent cations is more complex. (Fitting the data for the
monovalent salts in terms of a simple surface speciation model invol-
ving protonation of doubly coordinated Al2OH groups at low pH
yields a pKa value of ,7 and a density of one active group per surface
unit cell, reasonably consistent with recent models of the gibbsite
surface). The increase and decrease suggests the presence of two
separate processes. The first process, dominant at lower salt concen-
trations, enhances the already positive effect of surface charge. The
second reduces it again. Obviously, the first process cannot be driven
by electrostatic forces, the second one might be.

At this stage, it is tempting to invoke possible adsorption/desorption
reactions to explain Figure 2b. The rather low absolute value of seff is
consistent with general understanding, that the Al-OH gibbsite basal
plane is indeed chemically rather inactive18–20. However, atomic force
spectroscopy, just as electrokinetic measurements, probes the charge in
the diffuse part of the electric double layer. These techniques might be
too indirect to deliver a detailed picture of the complex chemical
processes that take place at the solid-liquid interface. To overcome this
limitation, we imaged the gibbsite surface at atomic resolution under
several electrolytes (details in Methods). Figure 3a shows the typical
pseudohexagonal pattern of the gibbsite basal plane, imaged under
deionized water. The pattern is caused by the arrangement of the
octahedral cavities with next neighbour spacing of ,0.5 nm, consistent
with dimensions of the surface unit cell with dimensions a 5 0.868 nm
and b 5 0.507 nm (Fig. 3d), as obtained by x-ray diffraction. Except for
an occasional contrast inversion (Fig. S3), which we attribute to loss of
true atomic resolution12, symmetry, contrast and the resolution of the
pattern remain unchanged when the water is replaced by solutions of
KCl or NaCl. From the absence of changes in surface topography, we
conclude that neither the monovalent cations nor Cl2 adsorbs strongly
to the gibbsite surface. Ions could be weakly adsorbed and pushed away
by the AFM tip, as has been discussed for mica in contact with elec-
trolyte solutions12,33–35. Nonadsorption of monovalent ions is comple-
tely consistent with protonation as an explanation for the increase in
effective surface charge, discussed above.

In stark contrast to behaviour in monovalent salt solutions, gibbsite
appearance changes dramatically when the solution is replaced with
10 mM CaCl2 or MgCl2 (Fig. 3b and Fig. S4b). The pseudohexagonal
pattern gives way to an array of double rows aligned along the b
direction (Fig. 3b and e). Each double row consists of alternating
bumps. The periodicity along and perpendicular to the double rows
is 0.50 nm and 0.87 nm (Fig. 3f), in excellent agreement with the
surface atomic structure. There are thus two bumps per surface unit
cell, which we interpret to be (possibly hydrated) ions adsorbed from
solution.

As we increase the concentration of CaCl2 to 100 mM, we observe
a second change in the appearance of the surface. The double rows
give way to single rows spaced by one lattice vector along the b
direction and with one bump per surface unit cell along the a dir-
ection (Fig. 3c). In between two adjacent rows, a second row of
bumps is sometimes seen, typically at much fainter contrast. The
same behaviour is observed when gibbsite is exposed to MgCl2 solu-
tions (Fig. S4c). At intermediate concentrations (<50 mM), we see
coexisting domains of double rows and of alternating bright-faint
rows (Fig. 4). This suggests two distinct two dimensional adsorbed
phases.

At this stage, we can already conclude that the gibbsite basal plane
is by no means chemically inactive. Rather than occasional reaction
of a few percent of the surface unit cells, as suggested by the low value
of seff and generally assumed in the literature5,18–20, our images show
that every unit cell accepts at least two adsorbed ions, where the bond
is strong enough that it is not pushed away by the tip. The concurrent
appearance of the (positive) maximum in seff and the double rows in
the high resolution images suggests that both phenomena result from
adsorption of the same type of ion. Because Cl2 does not affect the
surface pattern, even at concentrations of 100 mM NaCl or KCl, we
conclude that the double rows must be caused by divalent cation
adsorption. The agreement of the measured periodicities of the dou-
ble row structure with the surface unit cell dimensions suggests
bonding to well defined adsorption sites, rather than electrostatic
correlation between ions36. To identify the adsorption sites, we can

Figure 2 | Electrical properties of amorphous SiO2 and gibbsite measured with FM-AFM. (a), Force vs distance curves measured over a gibbsite

nanoparticle sorbed on oxidised silicon wafers in 1, 10 and 100 mM NaCl and CaCl2 solutions. Red curves: tip on silica substrate. Green: edge of gibbsite

particle. Blue: centre of gibbsite particle. Lines (solid: silica; dashed gibbsite): tip sample interaction force according to DLVO theory for constant charge

(top) and constant potential (bottom) boundary conditions. Inset: SEM image of AFM tip after the experiment. (CFM Aspire tip, with parameters of

silicon cantilever f0 5 22.9 kHz, cz 5 5.0 N/m, Q 5 9). (b), Surface charge as function of solution composition (pH < 6). Symbols: experimental data.

Solid black line: best fit assuming deprotonation of silanol groups in monovalent salt solutions (see text for details).

www.nature.com/scientificreports
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look more closely at the surface structure. The gibbsite surface unit
cell has six chemically inequivalent Al2-OH moieties. Simulations
suggest that deprotonation of these sites covers a rather wide range
of pKa

37. Three of them are located around the central octahedral
cavity and point toward the solution (small green dots in Fig. 3d).
These OH groups are available for interlayer hydrogen bonding in
the bulk gibbsite structure38 and for hydrogen bonding to adsorbates
at the surface39–41. Attachment at these sites would produce the
observed dimensions and zig zag pattern (Fig. 3d).

The simultaneous decrease of surface charge and change in pattern
appearance at higher concentrations suggest adsorption of Cl2 ions.
While there is no evidence for Cl2 adsorption on gibbsite, chloride
interaction with adsorbed Ca21 and Mg21 could promote attach-
ment. As concentrations increase, both Ca21 and Mg21 form ion
pairs with Cl2 so pairing on surfaces is consistent. Chloride adsorp-
tion has recently been reported in molecular dynamics simulations of
smectite-electrolyte interfaces42.

The adsorption of two divalent cations per unit cell without any
compensation of charge through surface deprotonation or coadsorp-
tion of anions corresponds to a hypothetical surface charge of 9.2
e/nm2. This is inconsistent with the low values of seff (Fig. 2b), which
correspond to less than one elementary charge per unit cell.
Substantial deviations between surface charge determined by mac-
roscopic methods such as titration and values obtained from the
diffuse layer, for example by electrokinetic or force measurements,
are not uncommon43. They are generally attributed to uncertainties

Figure 3 | Atomic resolution AFM images of gibbsite. (a), AFM topographic image of gibbsite basal plane in ultrapure deionised water. Insets: zoomed

and Fourier-filtered view with superimposed crystallographic lattice (top); 2D fast Fourier transform of image. (b), same type of data recorded in 10 mM

and (c), 100 mM CaCl2 solution. (d), Crystal structure of gibbsite in ac and ab planes. H atoms pointing perpendicular to the ab plane are shown in green.

(e), A zoom view of b with schematic indication of position of adsorbates and location of the height profiles in a (red) and b (blue) directions

shown in f. Height profiles in a (red) and b (blue) directions display periodicities of 0.87 nm and 0.50 nm, respectively.

Figure 4 | Gibbsite imaged in 50 mM MgCl2 showing phase-separated
domains with double row structure (bottom right) and single row
structure (top left) characteristic of low and high salt concentrations. The

area to the right of the white dashed line has equivalent height double rows

in a zig zag pattern with the same periodicity as Figure 3e and all images

obtained under 10 mM CaCl2 or MgCl2 solutions. Left of the dashed line,

the rows alternate in height, as observed for all of the surfaces imaged under

solutions of 100 mM CaCl2 or MgCl2.

www.nature.com/scientificreports
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in the exact location of the shear plane in electrokinetic measure-
ments and the mobility of weakly adsorbed ions. The mismatch in
charge density could originate from surface deprotonation or
adsorbed anions, that contribute to the effective surface charge in
spectroscopy experiments but that are too mobile to remain localized
under high-resolution imaging.

For a more detailed analysis of bonding tendencies and to help
explain the surface charge behaviour, we used density functional
theory (DFT) to examine the adsorption of Ca21, Mg21 and Cl2 onto
the Al-OH basal plane of gibbsite. We use the COSMO-RS implicit
solvent model with periodic boundary conditions to calculate the
equilibrium structure of the adsorbed divalent cations for both outer
and inner sphere configurations, i.e. with or without water of hydra-
tion between the ion and the surface (details in Methods and
Supplementary Information). In both cases, stable zig-zag double
rows were found. However, only formation of an outer sphere con-
figuration, containing enough hydration water to retain the average
bulk ion-water coordination number of six, was exothermic. The
formation energies for the divalent ion structures were 2118 kJ/
mol/Ca(OH)2 and 2115 kJ/mol/Mg(OH)2 (Table S1), Figures 5a
and S5 show the equilibrium, outer shell configurations that excel-
lently reproduce the experimentally observed double row structure,
with alternating adsorption sites. Three of four hydroxyl groups,
added to guarantee charge neutrality, act as hydrogen bonding
acceptors for surface protons. The fourth OH2 bridges between the
two cations. It is interesting that the fourth hydroxyl causes a slight
asymmetry in the zig-zag, which is compatible with the experimental
data (Supplementary Information, Fig. S6a, where structure from
Fig. 5a is superimposed on the AFM image).

Although the surface unit cell is charge neutral, our model offers
an interesting explanation of the slight positive surface charge at
intermediate salinities. The alternating structure of hydrated divalent
cations offers several sites where hydration water and OH2 bridge
between two cations. Water adsorbed on similar sites on calcite
surfaces is significantly more acidic than bulk water, with pKa as
low as 3 to 444. Additional COMSO-RS DFT calculations for clusters
of about 200 atoms, beginning with the converged solution of the

periodic calculation, allowed us to calculate pKa of 10.2 and 4.9 for
H2O R OH2 deprotonation for the adsorbed Ca21 and Mg21 struc-
ture. These values suggest that the positive charge in the spectroscopy
measurements results from partial protonation of hydroxyl that
bridges adjacent cations from solution. The pKa for Mg21 adsorption
is lower than for Ca21, implying that OH2, and hence the electro-
neutral configuration, is somewhat more stable for Mg21, in agree-
ment with the experiments, which show that the maximum charge
for the Mg21 structure is always lower than for the Ca structure,
Figure 2b and Figure S2.

Finally, we calculated the equilibrium configurations of the
adsorbed cations where one Cl2 ion per unit cell replaced the
bridging hydroxyl ion. Chloride also bridges adjacent cations,
slightly shifted towards the pseudo threefold cavity (Fig. 5b). The
vertical position is 210 pm above the plane, averaged over the metal
cations (cf. Fig. S6b). This ion exchange disables OH2 protonation
and results in a neutral surface structure, which explains the decrease
in seff at high salinity. The OH2 vs. Cl2 exchange energies are
139 kJ/mol and 147 kJ/mol for the Ca21 and Mg21 structures
(Table S2). For pH 5 6, this implies characteristic concentrations
of 30 mM for CaCl2 and 900 mM for MgCl2 to induce the exchange
reaction. These values are in very good agreement with the experi-
mental data and even explain the slight shift of maximum seff toward
higher Mg21 concentrations, compared with Ca21, in Figure 2b.

In conclusion, the combination of AFM spectroscopy, high reso-
lution imaging and numerical simulations provides unprecedented
insight into the complex processes involved in the formation of the
electric double layer on mineral surfaces. By resolving the internal
structure of the Stern layer we demonstrate a strong affinity for
divalent cations of a type of surface that has long been assumed to
be chemically inactive. For the specific case of gibbsite, the resulting
changes in surface chemistry have important consequences for the
role of Al-OH bearing mineral surfaces in modern technologies for
enhanced oil recovery.

Methods
Sample preparation. Gibbsite synthesis is described in detail by Wierenga et al.14 We
diluted the gibbsite stock suspension 100 times in a 151 mixture of ultrapure

Figure 5 | Equilibrium structure of adsorbed Ca21 (blue) and Cl2 (yellow) on the gibbsite basal plane in contact with aqueous solution predicted by
DFT calculations. Red and white: oxygen and hydrogen; gray: Al-O octahedral. (a), Side and top view of the optimized geometry for outer shell

adsorption of Ca21 (blue) on gibbsite. A 2 3 2 supercell of our simulation cell is shown for clarity. (b), At higher concentrations of CaCl2. Adsorption

plane of Cl2 is 0.22 nm above Ca21.
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deionised water (Milli-Q) and ethanol and we deposited 10 ml on freshly cleaned
silica substrates. After 30 s, they were rinsed with copious amounts of deionised water
and blown dry with air.

Atomic Force Microscopy (AFM). For atomic resolution, we used a Multimode8
AFM (Bruker Nano) equipped with Nanoscope V controller and an A scanner,
operated in tapping mode, mostly with Bruker FASTSCAN-B cantilevers (f0 5

170 kHz, cz 5 3 N/m, Q 5 10). Controls with Olympus AC-55, Aspire CFM (f0 5

22.9 kHz, cz 5 5.0 N/m, Q 5 9) and CT130 probes yielded similar results. Before use,
tips were cleaned by rinsing with a mixture of ethanol and isopropanol (<151) and air
plasma treatment (Harrick Plasma) for 15–30 min. A standard tapping mode liquid
probe holder without O-ring (Bruker Nano) was used for imaging. To minimize drift,
the system electronics were allowed to equilibrate for 20–60 min before data were
acquired. The AFM was operated in amplitude-modulation mode with free
amplitude, A0, typically less than 2 nm, high scan rate, <10 Hz, and imaging
amplitude set point as high as possible, typically A/A0 $ 0.8. All images were flattened
using Bruker’s standard Nanoscope Analysis 1.4 package, including, in some cases
slight low pass filtering to improve clarity.

AFM spectroscopy measurements were performed with a Dimension Icon AFM
(Bruker Nano) equipped with Nanoscope V controller which does not use a liquid cell
exciting ‘‘the whole chip’’, but rather a direct excitation of the cantilever as in usual
dynamic AFM in ambient air45. Additional drive electronics (QFM-Module,
NanoAnalytics GmbH, Germany) was used to operate the system in constant
excitation (CE)46 version of the frequency modulation technique and measure the
frequency shift of the oscillating cantilever, since it is known to be more robust,
especially for liquid applications, because it does not require an additional feedback
loop which keeps the oscillation amplitude constant (as in the constant amplitude
mode). Spectroscopy measurements were performed with rectangular silicon canti-
levers with conical tips (CFM and CT130, Aspire), using the standard direct drive
liquid probe holder and 60 mm glass petri dishes for the samples. The petri dishes,
tips and silica sample substrates were rinsed with isopropanol, ethanol and MilliQ
water before cleaning with air plasma for 15–30 min. To minimize changes in the tip
apex during the spectroscopy measurements, we did not allow the amplitude signal to
drop below ,70% of its value far away from the surface (free amplitude < 2 nm) by
setting a threshold. Tip-sample forces are calculated from the amplitude and fre-
quency shift vs distance curves as described in elsewhere47. The measured interaction
forces between tip and sample surface are converted to surface charge using Poisson-
Boltzmann theory, taking into account the actual tip geometry23 (Supplementary
Information).

Computational details. Periodic density functional theory (DFT) calculations were
performed using the program DMol3 with the COSMO-RS implicit solvent48, the
PBE functional, the DNP basis set and a dispersion correction49. We used a 1 3 2
gibbsite basal plane unit cell with lattice parameters (0.86840 3 1.01560 nm) defined
by x-ray diffraction. Periodic slab calculation included three molecular layers, of
which the lowest was frozen during all optimisations. Calculations for predicting pKa

for water binding to the adsorbed cations were performed with a cluster of gibbsite
{001} containing 204 atoms. The cluster was terminated with hydrogen at the Al-OH
edges to ensure electroneutrality for the structure with adsorbed OH2. Further
description of the experimental and theoretical details is provided in Supplementary
Information.
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I. Experimental and theoretical details

Gibbsite synthesis1: An aqueous solution of aluminium-iso-propoxide (15.2 g/L), aluminiumsec-

butoxide (20 g/L) and HCl (0.86 M) was stirred in a closed vessel at room temperature for 10 

days. The resulting turbid solution of amorphous aluminium hydroxide suspension was 

transferred to an autoclave for 72 h at 85 °C and then put into cellophane dialysis tubes and 

dialyzed against deionized water for 1 week. The procedure yielded a platelet concentration of 5-

8 g/L in the final suspension. The BET (N2) specific surface for the material was 76 m2/g and it 

did not change during storage of the stock material. Transmission electron micrographs show that 

colloids are well defined and fairly monodisperse hexagons with an average diameter of 160 nm. 

Potentiometric titration and the electrophoretic mobility suggest that edges of gibbsite colloids 

have an isoelectric point close to pH 7, which differs from that on the faces, i.e. pH~10. To 

prepare the samples for spectroscopy and AFM measurements, the stock suspension was diluted 

 times in a mixture of ultrapure deionised water (MilliQ) and ethanol (1:1). 10 ml of the

suspension are deposited onto freshly cleaned silica substrates. After 30 s residence time, the 

samples is rinsed with copious amounts of ultrapure water and blown dry with air. 

Force spectroscopy: Measurements were made in a range of solutions made with NaCl, KCl, 

MgCl2·6H2O, CaCl2·2H2O purchased from Sigma Aldrich, all at puriss, p.a. or ACS reagent 

grade. We made a stock solution of 1 M for each salt and diluted it for each experiment to 

concentrations of 0.5, 1, 3, 10, 30, and 100 mM. For each of the 24 cases, 100 interaction curves 

were measured along a scan line over a single gibbsite platelet. For each salt, a new, freshly 

cleaned silica substrate and petri dish were used and the series of measurements began with the 

sample exposed to the 0.5 mM solution. After completing the spectroscopy measurements for the 

lowest concentration, the cantilever was retracted from the surface by 0.5 mm, without removing 
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it from the liquid. The concentration was increased to 1, then 3, 10, 50 and 100 mM in turn, by 

adding aliquots of the stock solution. At each concentration, the liquid in the petri dish was gently 

mixed by flushing liquid in and out with a micropipette. The solution was allowed to equilibrate 

with the surface for 10 to 15 min. The sample was removed from the petri dish and mounted in 

the fluid cell of the AFM while it remained wet. Before and after collecting the force 

measurements, we recorded images of the gibbsite platelet, to make sure it had not drifted out of 

the scanning area. To get data from the various salt species that could be compared, all 

measurements were performed with the same cantilever. Each time a solution was replaced, the 

cantilever, the tip holder and the fluid cell were thoroughly flushed with ultrapure deionised 

water. The tip-sample force was determined from the amplitude and frequency shift vs distance 

curves using the method presented by Hölscher et al.2,3.  

The measured interaction forces between tip and sample surface were converted to surface charge 

with Poisson-Boltzmann theory. To optimise accuracy in the fitting process, several points were 

considered. Rather than using the classical formula for spherical particles, the actual geometry of 

the tip, derived from SEM images, was used for integrating the stress on the solid surface4:  

 (S1) 

where P(D) represents the pressure in the gap, D represents the tip-sample distance, R, the radius, 

α, the half angle of the tip. A similar expression is obtained for van der Waals part of the 

interaction for the same geometry 

(S2) 
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where f (D) = AH/(6πD3) describes the van der Waals force per unit area for two flat surfaces and 

AH is the Hamaker constant. The total tip-sample interaction force is obtained by adding the 

contributions from the van der Waals and electrostatic interactions, Fts(D) = Fel(D − z0) + 

FvdW(D). Here we account for a possible shift by z0 of the effective surface separation between the 

electrostatic interactions originating at the Helmholtz plane, whereas the van der Waals 

interactions start at the sample surface. To account for the thickness of Stern layers on tip and 

surface, we used z0 = 0.5-0.6 nm5. More details about theoretical background can be found in ref 4. 

Using tabulated values for the Hamaker constants AGbs= 1.210-20 J (gibbsite-water-SiO2)
6,7 

and for silica, ASiO2= 0.6510-20 J (SiO2-water-SiO2)
8, we calculated the AFM tip radius by fitting 

the model (eq. S2) to the experimental force curves for the highest concentration of divalent salts 

on silica, for which electrostatic interactions can be neglected. This results in a tip radius of ~56 

nm, in agreement with 52±5 nm measured from the SEM images after completion of the AFM 

experiments.  

Tips were initially brought into contact with the surface to blunt them slightly. Force distance 

curves at high concentrations of divalent cations were conducted several times at the beginning 

and at the end of each measurement to verify that the tip radius did not vary through the 

measurement. 

Keeping this value fixed, the surface charge as a function of the salt concentration is obtained 

by fitting the full model curves to the experimental data. In doing so, the symmetric part of the 

system (silica tip - silica surface) is used to determine the tip charge. Standard expressions are 

used to calculate the Debye screening length based on the salt concentration. Constant Charge 

(cc) and Constant Potential (cp) solutions to the Poisson–Boltzmann (PB) equation are
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calculated. The surface charge is determined by fitting the model force curves to the experimental 

data for tip-sample distances of a few nm, where the cc and the cp solutions overlap.  

The heterogeneous nature of the sample allowed us to obtain a calibration of the tip on the 

silica for every data set, only a few nanometers from the gibbsite particle. This eliminated the 

need for independent tip calibration. 

DFT: We used the DMol3 program with the COSMO-RS implicit solvent9,10,11,12 the PBE13 

functional, the DNP basis set and the dispersion correction by Grimme14 for the periodic density 

functional theory (DFT) calculations of the gibbsite {001} basal plane. We used a 1x2 unit cell 

and the gamma point only for all calculations. We constructed the simulation cell to be three 

molecular layers thick, perpendicular to the {001} face and the lowest layer was frozen in bulk 

positions throughout all simulations. All COSMO-RS calculations were performed using the 

parameterization DMOL3_PBE_C30_1301 in COSMOtherm vC30_130115. All presented 

geometries were optimized to the medium setting for Dmol3.  

All chemical reaction energies included entropy contributions from translational and rotational 

degrees of freedom for non-slab species, calculated using standard expressions for a gas phase 

pressure of 1 bar, the same condition used to calculate the solvation energies. Vibrational degrees 

of freedom were excluded, because of the difficulties involved in calculating these contributions 

for the slab systems. First, the computation is very expensive, and second, DFT relies on the 

harmonic approximation for determining the vibrational frequencies. The lowest lying modes can 

be very anharmonic, and contribute the most to the vibrational entropy. It is therefore very hard 

to assess the accuracy of this contribution and we have therefore disregarded vibrations in our 

calculations.  

We tested several starting geometries. The water coordination number for adsorbed Ca2+ and 

Mg2+ was at least 6 for all calculations and both inner and outer shell adsorption of Ca2+ and 



6 

Mg2+ to the gibbsite basal plane were investigated. All surfaces were neutral. To generate inner 

shell adsorption complexes, we initialized the calculations by placing two partially dehydrated 

Ca2+ or Mg2+ ions per unit cell close to the surface. At the same time, we removed the three more 

reactive protons from the surface and explicitly added one hydroxyl to keep the unit cell 

electroneutral. In an alternate test, we left the cations fully hydrated, removed three protons from 

the hydration water and added one hydroxyl ion per unit cell. Both initial configurations relaxed 

into the stable zigzag configuration, but the calculated reaction energies clearly favoured the 

outer shell configuration.  

The free hydration energy of the ions in our study was calculated as well using the reference state 

[1 bar gas / 1 mol solvent], to show that the DMol parameterization in COSMO-RS gives 

reasonable solvation properties for the ions. The solvation of the divalent cations was determined 

according to the following reaction: 

M2+ + 6H2O(aq)  M(H2O)6
2+(aq)        (S3) 

Here (aq) means COSMO-RS solvation in water. Without the explicit hydration water, the free 

energies of solvation of the divalent cations are about 500 kJ/mol too weak. Including waters of 

hydration clearly improved the simulation, which is why we included them in our adsorption 

reactions as well, both for the free and the adsorbed ions.  

The reaction per unit cell of gibbsite, for outer shell adsorption complexes was: 

gibbsite(001) H2O( )6
(aq)+2Ca H2O( )6

2+ (aq)+ 4OH -(aq)®gibbsite(001)Ca2 H2O( )6
OH( )4

ads,aq( )+12H2O(aq) (S4) 

To explore the configurations for high salinity solutions, we determined the energy required to 

exchange one hydroxyl ion in each unit cell for a Cl- ion, i.e.

gibbsite(001)Ca2 H2O( )6
OH( )4

ads,aq( ) +Cl -(aq)®gibbsite(001)Ca2 H2O( )6
OH( )3

Cl ads,aq( )+OH -(aq) (S5).
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Equivalent reactions were calculated for MgCl2 as well, Table S1 and S2. The most stable 

geometries for the Mg structures are shown in Figure S7. The COSMO surface for a bare gibbsite 

surface is shown in Figure S8 as an example of implicit solvation of a periodic structure. 
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II. Tables:

Table S1: Reaction energies for outer shell adsorption, which results in the zigzag structure from 

DFT calculations and the COSMO-RS implicit solvent model. Reactions are written using the 

stoichiometry for the primitive gibbsite unit cell but the energies are reported per cation. 

Hydration waters for the gibbsite structures are excluded in the reaction formula for clarity. 

Reaction 
G (per M2+(OH)2)

(kJ/mol)

[M2+] for 

coverage = 0.5, 

pH=6 (M) 

gibbsite(001) + 2Ca(H2O)6
2+ + 4OH-  

gibbsite(001)Ca2(OH)4(ads)+12H2O -118 2·10-5 

gibbsite(001) + 2Mg(H2O)6
2+ + 4OH-  

gibbsite(001)Mg2(OH)4(ads)+12H2O -115 9·10-5 

Table S2: Reaction energies for transforming double row structure (low salt concentrations) into 

single row structure (high conc.) from DFT calculations and the COSMO-RS implicit solvent 

model. Reactions are written using the stoichiometry per unit cell. Hydration waters for the 

gibbsite structures are excluded in the reaction formula for clarity. 

Reaction 
G (per Cl-)

(kJ/mol)

[Cl-] for 

coverage = 0.5, 

pH=6 (M) 

gibbsite(001)Ca2(OH)4(ads)+ Cl-  
gibbsite(001)Ca2(OH)3Cl(ads) + OH- 39 0.060 

gibbsite(001)Mg2(OH)4(ads) + Cl-  
gibbsite(001)Mg2(OH)3Cl(ads) + OH- 47 1.8 
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Table S3: Comparison of the experimental free energy of hydration for the ions in this study with 

our calculations using DFT and COSMO-RS. Energies are in kJ/mol.  

Ion Experimental16 Calculated 

Mg2+ -1830 -1785

Ca2+ -1505 -1440

OH- -430 -515

Cl- -340 -369

III. Additional Figures

Figure S1: FM-AFM images of a single gibbsite nanoparticle adsorbed to a silica substrate 

a, 500250 nm2 FM-AFM topography image b, frequency shift image, each with representative 

cross section through the gibbsite particle. The nonuniform distribution of frequency shift, 

revealed by the spike, attributed to a grain boundary running through the crystal. Imaging 

conditions: 20 mM NaCl solution, CFM Aspire rectangular silicon cantilever, conical tip; f0 = 

19.1 kHz, cz = 4.2 N/m, Q = 9.5.  
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Figure S2: Effective surface charge vs. solution composition for two other tips on silica and 

gibbsite.  

a, Tip parameters and SEM micrographs for Aspire CFM: f0 = 19.0 kHz, cz = 4.7 N/m, Q = 11; b, 

and for Aspire CT-130: f0 = 68.4 kHz, cz = 48.8 N/m, Q = 35. The images show the tips after use.  
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Figure S3: High resolution, noncontact AM-AFM topographic images of gibbsite during 

exposure to water and the monovalent cations  

a,a’, AFM images of the gibbsite basal plane obtained with super sharp tips at room temperature. 

The pseudohexagonal structure has 0.5 nm periodicity; b-e, Images taken in 10 mM and 100 mM 

NaCl and KCl solutions show no changes in topography compared with images taken in water. 

The pattern, with a periodicity of 0.5 nm is the same in all images. 
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Figure S4: High resolution, noncontact AM-AFM topographic images of gibbsite, taken in 

water and MgCl2 solutions.  

The pattern is quite different than that observed in monovalent solutions. 

Figure S5: Structural models produced by DFT simulations 

a, Mg2(OH)4 adsorbed on gibbsite, which produces a zigzag structure and b, the same surface but 

with chloride included, i.e. Mg2(OH)3Cl, which produces single rows  We have outlined four of 

the unit cells that we used in the simulations with a white box, which indicates the periodic 

boundary conditions. 



13 

Figure S6: AFM topographic images after processing with Fourier transformation taken in a, 10 

mM and b, 100 mM CaCl2 solution (same as Fig 3b and c) superimposed with structural models 

showing only adsorbed Ca2+ (blue) and Cl- (yelow) ions from Fig 5a and b. c, Height profiles are 

taken as indicated by solid lines in a, reveling the distance between the vertical position of the 

two Ca2+ ions which is around <50 pm as predicted by DFT calculations. d, Height profiles 

corresponding to b, showing vertical position of the Cl- ions which is around 200 pm above the 

metal cations in agreement with DFT calculations. 
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Figure S7: Molecular structure of a (1x2) unit cell of gibbsite seen from various angles, 

showing the COSMO surface for the periodic structure.  

Red indicates negative charge and blue, positive; green and yellow are near neutral. Left, side 

view; right, top view and middle, tilted.  
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Ion adsorption-induced wetting 
transition in oil-water-mineral 
systems
Frieder Mugele1, Bijoyendra Bera1, Andrea Cavalli1, Igor Siretanu1, Armando Maestro1, 
Michel Duits1, Martien Cohen-Stuart1, Dirk van den Ende1, Isabella Stocker2 & Ian Collins2

The relative wettability of oil and water on solid surfaces is generally governed by a complex 
competition of molecular interaction forces acting in such three-phase systems. Herein, we 
experimentally demonstrate how the adsorption of in nature abundant divalent Ca2+ cations to 
solid-liquid interfaces induces a macroscopic wetting transition from finite contact angles (≈10°) with 
to near-zero contact angles without divalent cations. We developed a quantitative model based on 
DLVO theory to demonstrate that this transition, which is observed on model clay surfaces, mica, 
but not on silica surfaces nor for monovalent K+ and Na+ cations is driven by charge reversal of the 
solid-liquid interface. Small amounts of a polar hydrocarbon, stearic acid, added to the ambient 
decane synergistically enhance the effect and lead to water contact angles up to 70° in the presence 
of Ca2+. Our results imply that it is the removal of divalent cations that makes reservoir rocks more 
hydrophilic, suggesting a generalizable strategy to control wettability and an explanation for the 
success of so-called low salinity water flooding, a recent enhanced oil recovery technology.

The relative wettability of oil and water on porous solids is crucial to many environmental and tech-
nological processes including imbibition, soil contamination/remediation, oil-water separation, and the 
recovery of crude oil from geological reservoirs1–7. Good wettability of a porous matrix to one liquid 
generally implies stronger retention of that fluid and simultaneously easier displacement of the other. 
In standard ‘water flooding’ oil recovery, (sea) water is injected into the ground to displace oil from the 
porous rock, typically at an efficiency < 50%. For decades, oil companies have explored adding chemi-
cals such as surfactants and polymers to the injection water to improve the process8,9. More recently, it 
was discovered that the efficiency can also be improved by reducing the salinity of the injection water10, 
i.e. without adding expensive and potentially harmful chemicals, known as low salinity water flooding
(LSWF). Yet, reported increases in recovery vary substantially and the microscopic mechanisms respon-
sible for the recovery increment remain debated9,11–13. A wide variety of mechanisms has been proposed
to explain the effect, including the mobilization of fines, interfacial tension variations, multicomponent
ion exchange, and double layer expansion10–12,14. Many of these mechanisms are interrelated and may
ultimately result in improved water wettability of the rock but evidence discriminating between them is
scarce. The key challenge in identifying the reasons for the success of LSWF lies in the intrinsic com-
plexity of the system and the lack of direct access to its microscopic properties. Here, we experimentally
demonstrate for a well-defined model system a consistent scenario leading from ion adsorption at the
solid-liquid interface to charge reversal and from there to wettability alteration. We also derive a model
that provides quantitative predictions of the experimentally observed contact angles. Our results clarify
many previous observations in core flooding experiments, including in particular the relevance of diva-
lent cations, clays, pH, and polar organic species.
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Results & Discussions
Wettability alteration. The rock of common sandstone reservoirs consists of highly polar materials 
such as quartz and clays that in ambient air are completely wetted by both water and oil. To analyze the 
competitive wetting of oil and water on these substrates, we measured the macroscopic contact angle 
of water of variable salt content against decane. We chose flat, freshly cleaved mica and freshly cleaned 
silica surfaces as model materials, to represent the basic components of sandstone reservoirs. The mac-
roscopic contact angle of water as observed in side view images, Fig. 1a, on mica and silica in ambient 
decane was found to depend strongly on the composition of the aqueous phase. We varied pH between 
3 and 10 and concentrations of NaCl, KCl and CaCl2 from 1 mM to 1 M (see Methods). Aqueous drops 
containing monovalent cations invariably spread to immeasurably small contact angles (< 2°); in con-
trast, drops containing divalent cations displayed finite contact angles on mica for concentrations above 
≈50 mM and pH >  4 (Fig. 1; see also Supplementary Material, movies S1 and S2). On silica, negligible 
contact angles were found for all pH’s and concentrations of all salts investigated, i.e. including the ones 
with divalent cations.

Proposed adsorption mechanism. To identify the origin of the wetting transition on mica, we 
analyzed the force balance between the decane-water (γ ), solid-decane (γ so) and solid-water (γ sw) 

Figure 1. Water wetting on mica in ambient decane for monovalent & divalent salt solutions. (a) Side 
view of drops of 1 M (pH 7) aqueous solutions of NaCl (left) and CaCl2 (right) immediately after bringing 
the drop on the needle in contact with the mica surface (ambient fluid: decane; needle diameter: 0.5 mm). 
NaCl solutions display immeasurably small contact angles, CaCl2 solutions can display a finite contact angle, 
depending on concentration and pH. (b) Symbols: Equilibrium contact angle on mica vs pH for CaCl2 salt 
solutions of various concentrations; 1,10,30 mM (downward triangles), 50 mM (olive diamonds), 80 mM 
(purple pentagons), 100 mM (blue triangles), 500 mM (red circles), 1 M (black squares). Solid lines: guides to 
the eye. The shaded region indicates very low contact angles, which are close or below the sensitivity of the 
instrument. The arrow with the letter c denotes the direction of increasing salt concentration.
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interfacial tension at the three phase contact line. Under partial wetting conditions, the spreading pres-
sure S so swγ γ γ= − ( + )is negative and the equilibrium contact angle θ  (measured through the aqueous 
phase) is given by Young’s equation (Fig.  2a), cos so swθ γ γ γ= ( − )/ 15. For water in contact with 
non-polar oils, γ   depends very weakly on pH and salt content (Supplementary Figure 1) and hence has 
a negligible influence on the wettability16. γ sw  usually decreases as salt content increases due to the 
spontaneous formation of an electric double layer at the solid-water interface17. Because any reduction of 
γ sw  can only induce a decrease of θ  , the observed increase upon addition of Ca2+ and Mg2+ ions must 
be caused by an even stronger decrease of γ so. The latter is plausible if the system forms a nanometer thin 
aqueous film next to the macroscopic drop with a salinity-dependent thickness h0 (Fig. 2a). Using imag-
ing ellipsometry we indeed detected such a film, as shown in Fig. 2c. Upon increasing the CaCl2 concen-
tration, h0 decreased from approximately 8 nm to less than 1 nm. For pure water and for NaCl solutions, 
ellipsometry measurements revealed that θ  is very small but finite despite the apparent spreading in side 
view images; h0 was found to be ≈ 10 nm. Given the existence of this nanofilm, we can write the equi-
librium tension γ so in terms of oil-water and solid-water interfacial tensions plus an effective interface 
potential Φ (h) representing the molecular interactions between the solid-water and the water-oil inter-
face as15 hso sw 0γ γ γ Φ= + + ( ). Here, Φ (h0) is the equilibrium value of Φ (h) corresponding to the 
equilibrium film thickness h = h0, such that

hcos 1 10θ Φ γ= + ( )/ ( )

The ion-induced wettability alteration thus reflects the salt-dependence of Φ (h), Fig. 2b.

Interfacial charge reversal. We decomposed h h h hh vdW elΦ Φ Φ Φ( ) = ( ) + ( ) + ( ) into contribu-
tions from short-range chemical hydration forces h hexph h

0Φ Φ λ( ) = ( − / ), van der Waals forces 
h A h12vdW

2Φ π( ) = / , and electrostatic forces Φ el(h). While the amplitude h
0Φ  and the decay length λ  

of the repulsive hydration forces as well as the Hamaker constant A generally vary weakly with pH and 

Figure 2. Proposed mechanism of wetting transition through ion adsorption and charge reversal at 
mica-water interface. (a) Schematic view of force balance, thin film with equilibrium thickness h0 (top) 
and surface charge configurations of repulsive (bottom left) and attractive interface potential (bottom right). 
(b) Effective interface potential for surface charges of equal (left, red lines, mica-NaCl solution at pH 6-oil)
and of opposite sign (right, blue lines, mica-CaCl2 solution at pH 6-oil), leading to near-zero and finite
contact angles, respectively. Lines denote salt concentrations: 1 mM (dashed lines), 10 mM (dotted lines) &
100 mM (solid lines). The arrows with the letter c denote the direction of increasing salt concentration. (c)
Ellipsometry images (top) and resulting thickness profiles (bottom): film thickness (h0) vs distance from
contact line for aqueous drops for various concentrations of CaCl2: 1 M (dark blue), 500 mM (magenta),
100 mM (green) and 10 mM (red) at pH 6; 1 M NaCl (black; grey symbols indicate scatter of raw data). Light
blue: water film thickness in decane before adding aqueous drop.
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salt concentration, they are not expected to change sign for the conditions of our experiments18. Hence, 
we conclude that the observed wettability alteration is driven by Φ el(h). The latter is repulsive and thus 
favors complete wetting if the charge densities σ sw and σ ow of the solid-water and the oil-water interface, 
respectively, carry the same sign. Vice versa, surface charges of opposite signs result in attraction and 
partial wetting. σ sw and σ ow are thus key parameters controlling wettability, as recently recognized in the 
context of wetting transitions with electrolyte solutions19,20.

For oil-water interfaces, σ ow is negative for pH >  3. The adsorption of ions is rather weak21,22, as we 
corroborated using streaming potential measurements with solid eicosane mimicking decane. In stream-
ing potential measurements for NaCl and KCl solutions, negative surface charges prevailed on mica 
for all conditions investigated, in agreement with surface force measurements17,23. For CaCl2, however, 
a much stronger adsorption was found, Fig.  3a, leading to charge reversal at concentrations beyond ~ 
50 mM24. Atomic force microscopy (AFM) confirmed this distinct difference between monovalent and 
divalent cations. While AFM images in pure water and aqueous NaCl and KCl solutions displayed the 
intrinsic hexagonal appearance of bare mica, a transition to a rectangular pattern was found for ambient 
CaCl2 solutions, Fig. 3b25. Similar to gibbsite-water interfaces26, we attribute this pattern to a layer of 
strongly adsorbed, possibly hydrated, divalent cations that reverse the sign of σ sw.

Interaction between interfaces. To quantitatively assess this suggested mechanism, we explicitly 
calculate the various contributions to the disjoining pressure discussed in the previous section. Φ h(h) is 

Figure 3. Ion adsorption at mica-water interface. (a) Surface Charge calculated from ζ  potential 
measurements (circles) vs. concentration of solutions of NaCl (red) and CaCl2 (blue) at pH 6. Solid lines: 
surface complexation model predictions. Blue triangles: AFM data from25; blue squares24, red triangles23, red 
squares32: surface forces apparatus measurements. The charge density is normalized by the characteristic 
scale 0σ  arising from the Poisson-Boltzmann equation, k T eB D0 0σ εε κ= / , where Dκ  is the Debye parameter. 
(b) AFM images of mica-water interface showing the characteristic hexagonal lattice of mica in 100 mM
NaCl solution (left), and a rectangular symmetry caused by (presumably hydrated) adsorbed Ca2+ ions in
100 mM CaCl2 (right). Insets: filtered zoomed views with overlaid lattice structure (top) and Fast Fourier
Transform image of the same data (bottom). c Gray scale encoded contact angle vs. pH and CaCl2
concentration. Top: model prediction; bottom: experimental data. Symbols (x: θ  <  2°) and numbers:
experimental data same as Fig. 1b with interpolated gray scale. Smoothed lines are guides to the eye based
on the experimental datapoints.
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characterized by an amplitude m10 50 mJh
0 2Φ = ... /  and a decay length 1 nmλ < 25,27. For Φ vdW(h) we 

use a Hamaker constant A 0 4 10 J21= − . × −  limited by the experimental constraint that the finite con-
tact angle of NaCl and KCl solutions must not exceed 2°. This negative Hamaker constant implies long 
range partial wetting, which arises from the fact that water has a lower refractive index than both mica 
and oil. We obtain the electrostatic contribution Φ el to the disjoining pressure by solving the 
Poisson-Boltzmann equation for the electrostatic potential Ψ  inside the thin film, which reads 

e Z c Z e k Texpi i i i B0Ψ εε Ψ″ = − / ∑ ( − / )∞ . In the equation, e is the elementary charge, 0ε  and ε are the 
vacuum and relative permittivity of the medium and k TB is the thermal energy in the system. The sum 
runs over the ions in the solution, with Zi representing the valence and ci

∞ the bulk concentration of the 
i-th specie. Here, we have used the full Poisson Boltzmann expression instead of classical examples28,29

of a reduced equation, since the zeta potentials in our system are clearly beyond 25 mV. We apply con-
stant charge (CC) boundary conditions, where the surface charges σ sw (at the solid-water interface) and
σ ow (at the oil-water interface) are determined from the corresponding surface complexation model (see
Methods), by fitting to experimentally measured streaming potentials. Once the electrostatic potential Ψ
is known, we find the contribution to the disjoining pressure Φ el by evaluating the standard expression

k T c eZ k T d dx dhexpel
h

B i i B
h

1
2 0

2

2
∫Φ Ψ εε Ψ= − 
 ∑ ( − / ) − ( / )  ′

∞
∞

′/
 18.

Adding up all the contributions to the disjoining pressure, we find that for sufficiently high Ca2+ 
concentrations, Φ (h) indeed develops a pronounced minimum at small h0, corresponding to water con-
tact angles up to 10°, as depicted in Fig. 2b. For Na+ and K+, however, a very shallow minimum corre-
sponding to a small but finite contact angle appears, due of the dominance of attractive van der Waals 
interactions (i.e. A 0< ) for large film values of h.

Using eq. (1), we extracted the contact angle θ  from the minima of Φ (h) for all fluid compositions, 
Fig. 3c,top. Comparison to the experimental results, Fig. 3c,bottom, shows that the model indeed cap-
tures all salient features of the experiments, including in particular the transition from near zero contact 
angles at low divalent ion concentration and pH to values of 10θ ≈ ° at high Ca concentration and pH. 
For monovalent cations on mica and for all salts on silica, the same calculation invariably results in 
repulsive electrostatic forces and hence negligibly small contact angles (< 2°).

Synergistically enhanced wettability alteration. Most crude oils contain small proportions of 
surface-active polar components in addition to alkanes. We investigated the impact of these components 
on the wettability by adding small amounts of stearic acid (S.A.) to the decane. Water drops containing 
divalent cations, when deposited on mica under decane/S.A. mixture, initially assumed 10θ ≈ °, as in 
absence of S.A. Within seconds, however, θ  increased to values of up to 70° (Fig. 4a,b; Movie S3). For 
drops containing NaCl, θ  slightly increased, too, but never exceeded 10°. AFM imaging of the mica sur-
face after removal from all liquids revealed the origin of this strong autophobic behavior: the surface was 
covered by a stearate monolayer very similar to partially decomposed Langmuir-Blodgett films of the 
same material reported earlier30. Close to the original contact line of the droplet, this layer was dense 
with occasional holes; farther away, bare mica was seen with occasional islands of monolayer stearate. 
Ca2+ and S.A. thus synergistically enhance the wettability alteration by promoting the self-assembly of 
hydrophobic Ca stearate monolayers.

In conclusion, these findings demonstrate how divalent cations in combination with clays and acidic 
components in the oil can control the wettability of oil-water-rock systems in water flooding oil recovery. 
The observed reduction in the water-mica contact angle in ambient decane of approximately 10°, as a 
result of removing divalent ions from the water, is itself sufficient to result in several percent of incre-
mental oil recovery31. More generally, our results suggest a universal strategy to manipulate wettability 
by controlling the adsorption of ions to solid-liquid interfaces.

Methods
Experimental System. Anhydrous n-decane (> 99%, Sigma Aldrich) is passed five times through 
a vertical column of Alumina powder (Al2O3, Sigma Aldrich, Puriss grade >  98%) to remove any 
surface-active impurities. The ultrapure water (resistivity 18 MΩ ) used to prepare the salt solutions is 
obtained from a Millipore water treatment system (Synergy UV Instruments). Solutions of various con-
centration (between 1 mM to 1 M cation concentration) are prepared for NaCl, KCl or CaCl2 salts (Sigma 
Aldrich). The pH of the solution is adjusted between 3 and 10 using HCl/HNO3 and NaOH (0.1 M, Sigma 
Aldrich). Muscovite mica (B&M Mica Company Inc., USA; initial thickness 340 μ m) and oxidized silicon 
wafers with an amorphous silicon oxide layer (thickness: 30 nm) mimicking silica represent the surface 
of a solid rock. Mica sheets are cleaved inside the oil phase to obtain a pristine surface during the exper-
iment. Silica surfaces are cleaned using a combination of Piranha solution (followed by extensive rinsing 
with ultrapure water) and plasma treatment.

Contact angle measurements. The wetting of aqueous drops on mica is characterized using a com-
mercial contact angle goniometer (OCA 20L, Dataphysics Inc.). The measurement is based on sessile-drop 
method using aqueous drops with a volume of 2 μ L placed on solid substrate. The contact angle of the 
drops is extracted from video snapshots using the tangent-fitting method in data analysis software (SCA 
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22) provided with the instrument. Contact angles can be determined with a relative accuracy of ± 1°. 
The minimum contact angle that can be determined on reflective surfaces is approximately 1.5°. Before
placing the aqueous drops on the substrates, pendant drop measurements are performed to determine
the oil/water interfacial tension (IFT). Constancy of the IFT over time ensures that the oil is devoid of
residual surface active contaminants after passing the alumina powder column.

Ellipsometry. Thickness measurements of ultrathin wetting films were performed using an imag-
ing ellipsometer (Accurion). The ellipsometer is equipped with custom-built quartz tubes attached to 
both the source (laser) and the detector arm to enable measurements under liquid at variable angle 
of incidence. In the case of mica, the bottom side of the substrate was roughened and coated with an 
index matched epoxy resin to suppress interference. Null ellipsometry experiments were performed. The 
thickness h0 of the potentially adsorbed water layer is extracted from the ellipsometric angles Ψ  and Δ  
assuming the bulk refractive index of the adjacent aqueous drop using standard Fresnel coefficients for 
a three layer system (substrate –water–oil).

Zeta Potential measurement. Surface charge and surface potential of solid/water (or oil/water) 
interfaces were determined by streaming potential measurements using a ZetaCAD instrument (CAD 
Instruments, France). The measurement cell consists of two substrates of the solid under investigation 
(50 mm x 30 mm) at a separation of 100 μ m. Measured ζ  potentials are converted to (diffuse layer) surface 
charges using Grahame’s equation.

Figure 4. Cation-induced surfactant adsorption on solid substrate in oil. (a) Snapshots of drops of 1 M 
CaCl2 solution (pH =  9) on mica immersed in ambient decane containing 100 μ M stearic acid, immediately 
after deposition (t =  0) and 5 s and 10 s later. Drops display autophobic behavior due to the deposition of 
organic layers on the substrate. (b) Equilibrium contact angle vs. pH for various concentrations of CaCl2: 
1 mM (cyan downward triangles), 10 mM (blue upward triangles), 100 mM (red circles), 1 M (black squares) 
and NaCl: 100 mM (red open circles). The arrow with the letter c denotes the direction of increasing salt 
concentration. Stearic acid concentration: 100 μ M. (c) After drop removal and drying AFM images display 
an almost complete monolayer at a distance of y1 =  100 μ m from the original contact line and an almost 
bare substrate with occasional stearate islands at y2 =  800 μ m. Height profiles, corresponding to the red 
lines in the AFM images, demonstrate that the thickness of the layer corresponds to the length of a stearate 
monolayer.
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Surface complexation modeling. The surface charge of solid-water interfaces is modelled using 
standard surface complexation models involving adsorption/desorption reactions of cations Xi (i =  H+, 
Na+, Ca2+) to surface sites S following the scheme SX S X↔ +− +. Each reaction is characterized by 
an equilibrium constant K with a corresponding value pK Klog= − . The law of mass action relates 
the cation concentration [Xi]s at the surface and the surface concentrations {SX} and {S-} to the equi-
librium constant: { } { }K SX S X[ ]i i i s= − . Local concentrations at the surface are related to the corre-
sponding bulk concentrations ci

∞ by a Boltzmann factor X c Z e k T[ ] expi s i i B0Ψ= ( − / )∞ , where Ψ 0 is 
the potential at the surface and Zi the valency of species i. For the oil-water interface, the primary 
charge generation mechanism is assumed to be the autolysis of water H O H OHs s2 ↔ ++ − 21 . 
Additional weak cation adsorption reactions are included, too. The surface charge is then given by the 

relation e
Z 1 1

1

c
C Zc

KC

H
KH

C Zc

KC

[ ]
= Γ

( − ) −

+ +
+

, where C Na CaZ 2c = ,+ + represent the activity of the ions considered. At 

large separation, the implicit dependence on 0Ψ  is solved equating this value to the one predicted by 
the Grahame Equation for monovalent  c k T e k T4 cosh 1mono B B

2
0 0σ = ( Ψ / − )∞  and divalent 

 c k T e k T e k T2 exp 2 2 exp 3di B B B
2

0 0 0σ = ( − Ψ / + Ψ / − )∞  salts, respectively. We use this procedure to 
extrapolate the value of the surface charges for all pH and salt concentrations considered. Our choice 
of the equilibrium constants is based on values from literature: a complete overview of all surface reac-
tions and pK values is provided in the supplementary information, Table S1. In Fig.  3a we observe a 
good agreement between the values obtained by this approach (full lines) and several experimental 
measurements of the surface charge of Mica for monovalent and divalent salts.
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S1. Contribution of Interfacial  tension  at Oil/Water Interfaces 

Oil/water interfacial  tension is measured using Pendant Drop method  in OCA 20 (Dataphysics Inc.).  A 

pendant drop (volume 15-20 µl) of salt solution is prepared in ambient decane phase, and using tangent 

fitting to the contour of the drop, interfacial tension is measured.  We observe no significant change in 

interfacial  tension  with change of pH, but  with increasing concentration of salt  in the  aqueous  phase, 

a small decrease in the  interfacial  is noticed (Supplementary Figure 1).   If the  interfacial  tensions  at 

solid/water and  solid/oil  interfaces remain constant, then Supplementary Figure 1 would suggest a 

decrease in contact  angle with increasing salt concentration. But we notice an increase in contact angle 

with increasing salt concentration, which confirms our hypothesis  of existence of a thin  wetting  film 

between mica and decane. 
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Supplementary Figure 1 | Equilibrium interfacial tensions for the decane-water interface. Squares: 

Interfacial tension vs salt concentration measured  with a pendant drop of CaCl2 salt at pH 7 in ambient 

decane (oil), the error bars show the standard error. Solid line: guide to the eye. 
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Mica interface Oil interface 

Reactions 
{𝑆𝐻} ↔  {𝑆−} + [𝐻+] 

{𝑆𝐶𝑍𝑐} ↔  {𝑆−} + 〈𝐶𝑍𝑐〉 
{𝑆𝐶𝑍𝑐} + {𝑆−} + {𝑆𝐻} = Γmica 

{𝑆𝐻2𝑂} ↔  {𝑆𝑂𝐻−} + [𝐻+] 
{𝑆𝑂𝐻 − 𝐶𝑍𝑐} ↔ {𝑆𝑂𝐻−} + 〈𝐶𝑍𝑐〉 

{𝑆𝐻2𝑂} +  {𝑆𝑂𝐻−} + {𝑆𝑂𝐻 − 𝐶𝑍𝑐} = Γoil 

Coefficients 

Γmica = 0.8 sites/nm2 
𝑃𝐾𝐶𝑎2+ = 1.5 
𝑃𝐾𝑁𝑎+ = 0.5 
𝑃𝐾𝐻+ = 5.3 

  Γoil = 17.3 sites/nm2 
𝑃𝐾𝐶𝑎2+ = −1 
𝑃𝐾𝑁𝑎+ = −1 
𝑃𝐾𝐻+ = 7 

Charge 𝜎 = 𝑒Γ
(𝑍𝑐 − 1) 〈𝐶

𝑍𝑐〉
𝐾𝐶

− 1

1 + [𝐻+]
𝐾𝐻

+ 〈𝐶𝑍𝑐〉
𝐾𝐶

𝜎 = 𝑒Γ
(𝑍𝑐 − 1) 〈𝐶

𝑍𝑐〉
𝐾𝐶

− 1

1 + [𝐻+]
𝐾𝐻

+ 〈𝐶𝑍𝑐〉
𝐾𝐶

Supplementary Table 1 | Complexation model coefficients for the reactions at the Mica-water 

interface (left) and Oil-water interface (right). { } represents  surface concentrations, [ ]  bulk 

concentrations  and < > the bulk activity of a given specie. 
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[Movie S1] 

Movie S1 | ‘Almost’ complete wetting with NaCl.  Typical behaviour of an aqueous drop (volume 2µl) 

containing a monovalent salt (NaCl)  at any concentration or pH. The drop spreads on the  mica (which is 

in ambient decane) without forming any wedge-shaped drop, thus making impossible to characterize  a 

contact  angle with the optical goniometer.  

[Movie S2] 

Movie S2 | Partial wetting with CaCl2. An aqueous drop (volume 2µl) containing divalent CaCl2/MgCl2 

solution (at a concentration higher than  50mM) does not spread on mica (in ambient  decane) as in the  

previous case.  A wedge-shaped  drop  is formed, where a small but  definite finite contact  angle is 

possible to measure  with the goniometer. 

[Movie S3] 

Movie S3 | Synergistic contact angle enhancement, with CaCl2 and added stearic acid to the oil phase. 

An aqueous drop (volume 2µl) containing divalent CaCl2 solution (at a concentration of 1M) is deposited 

on mica in ambient  decane. 0.1mM stearic acid is added to the oil phase.  The water droplet forms a 

finite but small contact angle, which grows rapidly due to the autophobing effect described in the main 

manuscript. 
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Extracting local surface charges and charge
regulation behavior from atomic force
microscopy measurements at heterogeneous
solid-electrolyte interfaces

Cunlu Zhao, Daniel Ebeling, Igor Siretanu, Dirk van den Ende and Frieder Mugele*

We present a method to determine the local surface charge of solid–liquid interfaces from Atomic Force

Microscopy (AFM) measurements that takes into account shifts of the adsorption/desorption equilibria of

protons and ions as the cantilever tip approaches the sample. We recorded AFM force distance curves in

dynamic mode with sharp tips on heterogeneous silica surfaces partially covered by gibbsite nano-

particles immersed in an aqueous electrolyte with variable concentrations of dissolved NaCl and KCl at pH

5.8. Forces are analyzed in the framework of Derjaguin–Landau–Verwey–Overbeek (DLVO) theory in

combination with a charge regulation boundary that describes adsorption and desorption reactions of

protons and ions. A systematic method to extract the equilibrium constants of these reactions by simul-

taneous least-squared fitting to experimental data for various salt concentrations is developed and is

shown to yield highly consistent results for silica-electrolyte interfaces. For gibbsite-electrolyte interfaces,

the surface charge can be determined, yet, an unambiguous identification of the relevant surface specia-

tion reactions is not possible, presumably due to a combination of intrinsic chemical complexity and

heterogeneity of the nano-particle surfaces.

1. Introduction

In recent years, high resolution imaging and spectroscopy
techniques in Atomic Force Microscopy (AFM) have generated
unprecedented insights into structure and dissipation in
liquids in the vicinity of solid surfaces. Certain organic liquids
have attracted specific attention because of their model charac-
ter and the simplicity of the dominant molecular interaction
forces (e.g. van der Waals interactions), which gives rise –

amongst others – to very pronounced and characteristic oscil-
latory solvation forces.1–5 Compared to these systems, water
and aqueous electrolytes are much more complex for several
reasons including the strongly dipolar character of water mole-
cules, the role of hydrogen bonding, the hydration of surfaces,
and the almost unavoidable presence of ions.6–12 In addition,
solid surfaces, including AFM tips, typically acquire finite
surface charges upon immersion into water. These surface
charges give rise to rather long range electrostatic forces that

decay exponentially with a decay length ranging from approxi-
mately 1 nm to 100 nm, depending on the salt concentration.
Technically, long range electrostatic forces generate a back-
ground force that is superimposed onto the more short-ranged
chemical forces such as surface and ion hydration forces that
play a crucial role in atomic resolution imaging in aqueous
environment. More importantly, long range electrostatic forces
also provide the physical background field that controls the
adsorption of ions, which has been found to have a strong
effect not only on the average surface charge but also on the
strength of oscillatory hydration forces in water.7,8 A decent
understanding and quantitative characterization of electro-
static interactions is therefore crucial for the interpretation of
high resolution AFM experiments in aqueous environment.

In colloid science, the general principles controlling surface
charge, ion adsorption, and electrostatic interaction forces are
well established. Surface charge and ion adsorption are gene-
rally governed by an equilibrium between desorption and
adsorption of protons and ions from and to specific sites on
the surface.13,14 To first approximation, the binding energies
involved in these processes are governed by short range mole-
cular forces that can be described by the equilibrium constants
K (or their counterpart pK = −log K) of individual adsorption/

Physics of Complex Fluids Group and MESA+ Institute, Faculty of Science and

Technology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands.

E-mail: f.mugele@utwente.nl

16298 | Nanoscale, 2015, 7, 16298–16311 This journal is © The Royal Society of Chemistry 2015

www.rsc.org/nanoscale
http://crossmark.crossref.org/dialog/?doi=10.1039/c5nr05261k&domain=pdf&date_stamp=2015-09-24


desorption reactions, or so-called speciation reactions. In
addition to the equilibrium constants, the actual fractional
coverage of adsorbed/desorbed species for a given situation
depends on the local concentration of the ions next to the
surface. The latter is proportional to the bulk concentration
but it is modified by the local electrostatic potential at the
surface. Because the latter itself is generated by the surface
charge, determining the equilibrium charge density of solid-
electrolyte interfaces requires a self-consistent solution of both
adsorption/desorption equilibria and the electrostatic poten-
tial distribution in the vicinity of the interface. In the classical
mean field picture, the solution is obtained by coupling the
Poisson–Boltzmann (PB) equation for the distribution of ions
and electrostatic potential in the diffuse part of the electric
double layer to surface speciation reactions of a variable
degree of complexity15,16 for the adsorbed ions in the Stern
part of the electric double layer. Colloidal and AFM force
measurements necessarily involve the presence of two solid-
electrolyte interfaces in close proximity. Electrostatic forces
only arise once the diffuse parts of the double layers overlap.
As a consequence, the electrostatic potential and the local con-
centration of ions that determine surface charge and fractional
coverage of the surfaces change upon varying the distance
between tip and sample. This phenomenon is known as
charge regulation (CR) and was first described in detail by
Ninham and Parsegian.17 Since then, numerous colloidal
surface force measurements using the surface forces apparatus
(SFA)18–21 as well as colloidal probe AFM force measure-
ments22–27 have established that the surface charge typically
changes upon approaching two solid surfaces in an ambient
electrolyte because of the CR behavior. In particular, the group
of Borkovec (see ref. 28 and refs. therein) invested substantial
effort to implement charge regulation models in colloid probe
AFM force microscopy and to quantify the degree of charge
regulation for a wide variety of materials. Because their
primary interest was to describe colloidal interaction forces
and not the specific surface chemistry, they introduced a so-
called constant regulation approach that allows for describing

force distance curves and extracting the net surface charges
without explicitly specifying the individual surface speciation
reactions.

While providing excellent average forces on a mesoscopic
scale, colloidal probe AFM force measurements do not provide
the lateral resolution that is required to characterize hetero-
geneous surfaces nor do they provide a sufficiently well-
defined confinement geometry to help bridging the gap from
the colloidal scale to atomic scale imaging of solid surfaces.
To bridge this gap, we recently extended the principle of
electrostatic surface characterization from colloidal science to
dynamic AFM measurements with sharp cantilever tips and
corresponding high lateral resolution of the order of the tip
radius (several tens of nanometers).12,29 Experiments with
solutions of chloride salts of Na, K, Ca, and Mg demonstrated
that the surface charge of silica and gibbsite surfaces strongly
depends on the concentration and valency of the cations.
Local surface charge density was extracted based on the
asymptotic forces measured at distances much larger than the
Debye screening length using solutions of the Poisson–Boltz-
mann equation under the classical constant charge (CC) or
constant potential (CP) boundary condition. In that range,
however, the measured forces are inherently small, which
limits the accuracy of the measured charge densities. At
smaller tip-sample separations, measured forces were found to
fall in between the classical CC and CP solutions of the PB
equation, indicating the occurrence of charge regulation. In
the present work, we implement a data analysis procedure that
includes charge regulation to the force measurements pre-
sented in ref. 12. Fig. 1(a) presents a typical silica/gibbsite
composite sample and the corresponding measured forces for
10 mM NaCl solution at pH 5.8. The novelty of our approach is
thus twofold: (i) we demonstrate the applicability and signifi-
cancy of the charge regulation concept for AFM measurements
with sharp tips and correspondingly high lateral resolution.
(ii) We go beyond the common constant regulation
approach30,31 and extract directly equilibrium constants of
surface speciation reactions using the full non-linear Poisson–

Fig. 1 (a) 3D view of a gibbsite nanoparticle adsorbed onto a silica surface along with force-vs.-distance curves (color coded) along a line section
through the particle. Repulsive forces (red) upon approaching the silica surface indicate negative surface charge and attractive forces (blue) on the
gibbsite particle indicate positive surface charge. Data are acquired with a negatively charged oxidized silicon tip in 10 mM NaCl solution at pH ≈
5.8. Data adapted from ref. 12. (b) Schematic of the sample system (dimensions not to scale) consisting of a gibbsite platelet immobilized on a silica
substrate. The magnification of the tip apex in the right part of the figure gives a more detailed view of the used tip geometry which is modeled as a
truncated cone with a flat end having radius of R ≈ 30 nm.
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Boltzmann equation and charge regulation boundary con-
dition. We discuss the applicability and reliability of our
approach for common silica-electrolyte and for less common
gibbsite-electrolyte interfaces.

The manuscript is organized as follows. In section 2, we
recapitulate the general charge regulation scheme of coupling
the PB description of the ion distribution in the diffuse layer
to the surface complexation reactions and discuss specific
aspects of its implementation for symmetric and asymmetric
material combinations of tip and sample. In section 3, we
describe the specific data analysis procedure, which involves
the simultaneous optimization of parameters by a least-
squared fitting of the charge regulation model to the experi-
mental data obtained for variable fluid compositions. We
identify well-defined equilibrium constants for deprotonation
and cation adsorption reactions on silica. In section 4 we
discuss the consequences of our results for AFM measure-
ments in aqueous electrolytes in general. In particular,
we extrapolate our results for silica to a wider range of
fluid compositions and discuss possible limitations of the
mean field approach inherent to our PB description of the
electrolyte.

2 Theoretical framework
2.1 DLVO theory

Tip-sample interaction forces are analyzed in the framework of
DLVO theory. In DLVO theory the disjoining pressure between
two adjacent surfaces at distance D is decomposed into contri-
butions from van der Waals interaction ΠvdW and electrostatic
double layer forces Πel.

ΠðDÞ ¼ ΠvdW þ Πel ð1Þ
Additional contributions to the disjoining pressure due to

short range interactions such as hydration forces only become
important at tip-sample separations of ≲1–2 nm. In the
present analysis, we disregard these contributions. This
implies that our model will only be applicable for tip sample
separations beyond 1–2 nm.

Once the disjoining pressure is known, the force on the tip
is calculated by integrating Π over the tip surface. For spherical
probes as in colloidal probe AFM this is typically done using
the Derjaguin approximation (see e.g. ref. 32). In our experi-
ments, the AFM tips are slightly flattened leading to a local
parallel plate geometry with a rather small contribution from
the adjacent cone,12,29 as sketched in Fig. 1(b). We therefore
approximate the total force by

FðDÞ ¼ πR 2ΠðDÞ ð2Þ
We estimate the absolute uncertainty of the procedure to be

of order 10%.29 Relative trends and the dependence of the
force on the fluid composition, however, are not affected by
these geometric uncertainties.

van der Waals forces. The contribution due to van der
Waals forces is straight forward to analyze, because it can be

written as an explicit function of D. Ignoring retardation
effects, we can write for two parallel interfaces

ΠvdWðDÞ ¼ � A
6πD3 ð3Þ

where A is the Hamaker constant.
Electric double layer forces. The electrostatic contribution is

the more interesting one because it contains the information
on the surface chemistry that we are interested in. Yet, this
information is contained in the expression for the electrostatic
disjoining pressure only in a rather indirect fashion. Formally,
we can write Πel as

ΠelðDÞ ¼ kBT
X
i

ðciðzÞ � ci1Þ � εε0
2

dψ
dz

� �2

: ð4Þ

Πel consists of a first contribution due to osmotic repul-
sion caused by local variations of the ion concentration and
a second one due to direct electrostatic attraction (Maxwell
stress). Here kB is the Boltzmann constant, T is temperature,
εε0 the dielectric permittivity of water. In the first term, the
sum runs over all ionic species i in the system. ci∞ is the
bulk number concentration of corresponding ions. The solu-
tion of eqn (4) depends on the unknown functions ci(z) and
ψ(z), i.e., the concentration profiles of all ionic species and
electrostatic potential in the electrolyte at an arbitrary posi-
tion ds < z < D − ds between the two solid surfaces, where
ds is the thickness of the Stern layer. Making use of the fact
that the ions follow the Boltzmann distribution, i.e. ci(z) =
ci∞ exp(−Zieψ(z)/kBT ), we can calculate the potential distri-
bution ψ(z) by numerically solving the Poisson–Boltzmann
(PB) equation

d2

dz2
ψðzÞ ¼ � e

εε0

X
i

Zici1 exp �ZieψðzÞ
kBT

� �
ð5Þ

between the substrate surface and the tip using a standard
Runge–Kutta algorithm. e represents the elementary charge,
and Zi is the valency of corresponding ions. Eqn (4) and (5)
imply that the Πel depends directly only on the field distri-
bution and ion distribution in the diffuse part of the double
layer. The surface chemistry that we are actually interested in
enters the problem only via boundary conditions of eqn (5),
which are determined by σI and σII, the net surface charge
densities of tip and sample. Alternatively, the potentials ψ(ds)
and ψ(D − ds) that are related to the surface charges via
Gauss’ law can be specified to solve eqn (5). Once ψ(z) is
known as a function of ψ(ds) and ψ(D − ds), we calculate
the total charge in the diffuse layer, σd, by evaluating the
integral

σdðψðdsÞ; ψðD� dsÞÞ ¼
ðD�ds

ds

e
εε0

X
i

Zici1 exp
ZieψðzÞ
kBT

� �
dz ð6Þ

However, ψ(ds) and ψ(D − ds) (or equivalently σI and σII) are
not known a priori and need to be determined self-
consistently as part of the solution procedure. For an electric
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double layer at a single solid electrolyte interface this equation
reduces to Grahame’s equation14 that relates the total diffuse
layer charge density and the potential drop in a double layer.

2.2 Surface charge and charge regulation

As discussed above, the surface charge is controlled by
adsorption and desorption equilibrium of protons and salt
ions from the solution at the interface. We first recapitulate
the problem for a single surface reaction (i.e. deprotonation)
at the interface following the scheme originally described by
Ninham and Parsegian17 to explain the coupling between
surface chemistry and diffuse layer physics using the so-
called Gouy–Chapman model of double layer. Subsequently,
we generalize this scheme to the actual situation of our
experiments that involves several surface reactions including
the adsorption of salt ions and the formation of a Stern
layer.

Single deprotonation reaction. We consider a surface site
SH that can deprotonate to produce a negatively charged site
S− following the simple chemical reaction

S� þHþ Ð SH ð7Þ
The reaction is characterized by an equilibrium constant

K1H with a corresponding pK value pK1H = −log K1H. For the
silica surfaces to be described below, SH would be simply a
silanol group SiOH. The location of the equilibrium of the
chemical reaction eqn (7) follows the law of mass action

fS�g½Hþ�0 ¼ K1HfSHg ð8Þ
where curly brackets, { }, indicate surface concentrations and
square brackets, [ ], indicate volume concentrations. [H+]0 is
the local proton concentration at the S sites, i.e. directly at the
surface. The total Γ density of surface sites S is fixed by the
geometry and chemistry of the surface, leading to a conserva-
tion law

fS�g þ fSHg ¼ Γ ð9Þ
Eqn (8) and (9) form a set of linear equations for the

surface concentration {S−} and {SH} that we can formally
rewrite as a matrix equation

1 1
½Hþ�0 �K1H

� � fS�g
fSHg

� �
¼ Γ

0

� �
ð10Þ

which can be solved for {S−} and {SH}. Physically, this
approach is equivalent to treating the protons adsorbed to the
fixed density of surfaces site S as a lattice gas of non-interact-
ing particles with a chemical potential μs. This potential is
equal to the chemical potential of a reservoir with a concen-
tration [H+]0. The gain in chemical potential upon adsorption
is Δμ0 = kBT ln K1H/[H

+]∞.
33

The above procedure results in a surface charge density that
is given by

σ0 ¼
X
i

qifXig ð11Þ

where qi = eZi is the charge of the surface group of species Xi.
With eqn (7) as the only chemical reaction, eqn (11) thus
reduces to

σ0 ¼ �efS�g ¼ � eΓ

1þ ½Hþ�0
K1H

: ð12Þ

Eqn (12) provides the surface charge as a function of the
local proton concentration [H+]0 at the surface. [H+]0 deviates
from the bulk concentration [H+]∞ (which is fixed by the pH =
−log[H+]∞ of the solution) because of the unknown electro-
static potential on the surface, ψ0. [H

+]0 is assumed to follow a
Boltzmann distribution

½Hþ�0 ¼ ½Hþ�1e�eψ0=kBT ð13Þ

Together, eqn (12) and (13) lead to an expression σ0 =
σ0(ψ0), i.e. an equation that connects the potential at the
surface to the surface charge via the surface chemistry. This
relation is the counterpart of eqn (6), which expresses the
charge in the diffuse layer as a function of the potential at the
surface. Together they assure charge neutrality, i.e. the charge
on the surfaces of tip and sample have to be compensated by
the charge in the diffuse layer.

σ Iðψ0
IÞ þ σ IIðψ0

IIÞ þ σdðψðdsÞ;ψðD� dsÞÞ ¼ 0 ð14Þ

For the simple case of a symmetric system with tip and
surface both made of the same material (e.g. silica in our
experiments), we can write down the same potential-charge
relations, eqn (12), for both surfaces. Using the simple
Gouy–Chapman model of the electric double layer, we
assume that the ionizable groups are located directly at the
surface and that the Poisson–Boltzmann description of the
diffuse layer extends all the way to surface. Hence, we ident-
ify ψ0

I = ψ(0) and ψ0
II = ψ(D). (In this case there is no Stern

layer, so ds = 0.) Solving eqn (14) we thus obtain the self-
consistent distribution of the electrostatic potential, the salt
ions in the solution and the ad/desorption of protons on
the surface. The results are inserted into eqn (4) and (2) to
calculate the total force, which is then expressed as a func-
tion of the parameters that characterize the charging reac-
tion of the surface, i.e. the site density Γ and the
equilibrium constant K1H. Because Γ is usually fixed by the
crystallography of the surface, K1H is the parameter of
primary interest that is determined by fitting to the experi-
mental data.

Adsorption of several ions and Stern layer formation. The
approach described above can be readily generalized to situ-
ations with several surface reactions, such as the adsorption of
a cation of valency Zc to a deprotonated surface site S−

S� þ Czcþ Ð S�Czcþ ð15Þ

with an equilibrium constant KC. Additional possible reactions
include for instance the adsorption of a proton (viz., protona-
tion), and additional anion and cation adsorption reactions to
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either charged or uncharged sites, each accompanied by its
own equilibrium constant.

SHþHþ Ð SHþ
2 with K2H

SHþ
2 þ Aza� Ð SHþ

2 A
za� with KA

SHþ Czcþ Ð SHCzcþ with KHC

SHþ Aza� Ð SHAza� with KHA

� � �

ð16Þ

If lateral interactions between adsorbed species are
ignored, as usual in first order approximations, the location of
the chemical equilibria is determined for each ionic species
separately by a law of mass action using the relevant local con-
centration of the respective ion in the electrolyte.

While ions are treated as point-like in the Poisson–Boltz-
mann description of the diffuse layer, their finite size is
usually taken into account when considering the position of
the adsorbed ions in the Stern layer. Fig. 2 illustrates the Stern
models of electric double layer for both surfaces considered in
current study. Sophisticated implementations of this idea
involve several planes away from the actual surface. Here we
consider two planes the “0” plane and the “s” plane, which
divides the double layer into a Stern layer and the diffuse layer.
The (de-) protonation reaction takes place at the “0” plane,
while electrolyte ions are adsorbed at the “s” plane.

This approach results in a generalization of the matrix
eqn (10)

1 1 1 . . .
½Hþ�0 �K1H 0 . . .
½Czcþ�s 0 �KC . . .
. . . . . . . . . . . .

0
BB@

1
CCA

fS�g
fSHg

fS�Czcþg
. . .

0
B@

1
CA ¼

Γ
0
0
. . .

0
B@

1
CA

ð17Þ

where the triple dots indicate additional possible surface reac-
tions. Similarly, identifying all possible charged complexes on

the surface results in a generalization of eqn (11). Finally,
solving the linear matrix eqn (17) leads to a generalized form
of eqn (12). To evaluate that expression, the local concen-
trations of each ion at its specific adsorption plane must be
calculated using the Boltzmann distribution with the local
electrostatic potential at that plane.15

2.3 Specific implementation

Silica surfaces in contact with NaCl and KCl solutions. In
general, the correct identification of the relevant surface reac-
tions in systems involving several components is rather chal-
lenging and – given the indirectness of force and electrokinetic
measurements – involves substantial uncertainties. Silica in
contact with aqueous solutions of NaCl or KCl of moderate
concentration is an ideal model system, arguably the best
characterized one in the literature. In this case, we can restrict
the reactions to the deprotonation of silanol groups, eqn (7)
with SiOH as SH and SiO− as S− sites, and the adsorption of a
single monovalent cation species, see eqn (15), SiO−Na+ or
SiO−K+ as S−C+. So, we consider only the 3 × 3 matrix equation
explicitly written in eqn (17). With reference to the double
layer structure of silica shown in Fig. 2(a), SiOH and SiO− sites
are located in the “0” plane, and cations are adsorbed at the
“s” plane. The charge densities at the “0” and the “s” planes
are then given by

σ0 ¼ �eðΓ � fSiOHgÞ ¼ �efSiO�g � efSiO�Cþg ð18Þ

σs ¼ efSiO�Cþg ð19Þ
Because the space charge density between the “0” plane

and the “s” plane vanishes, the potential drop in the Stern
layer is linear and can be expressed as

ψ0 � ψs ¼
σ0
Cs

ð20Þ

where Cs is the capacitance of the Stern layer.
Together, σ0 and σs define the net or ‘effective’ charge of

each surface in the AFM experiments, i.e. we can write σI = σ0
I

+ σs
I for the tip and σII = σ0

II + σs
II, respectively. These two

expressions are inserted in eqn (14) to obtain the solution.
Because the charge in the diffuse layer compensates the net
charges σI and σII and the Poisson–Boltzmann equation is only
applied between the s planes of the two surfaces, we identify
ψ(ds) = ψs

I and ψ(D − ds) = ψs
II in eqn (14) in the presence of a

Stern layer with adsorbed ions. If tip and sample are of the
same material (e.g., AFM silica tip over silica substrate), we use
the additional simplification σI = σII and ψ(ds) = ψ(D − ds). The
specific chemical reactions and parameter values required for
the data analysis are summarized in Table 1.

Gibbsite surfaces in contact with NaCl and KCl solutions.
While the surface complexation on silica surfaces as described
above is well established and widely accepted, the origin of the
surface charge on the basal plane of gibbsite is less clear. The
basal plane of gibbsite has only a doubly coordinated surface
group, Al2OH. Crystallographically, there are six different
Al2OH groups per surface unit cell of gibbsite. The classic mul-

Fig. 2 Schematic of the basic Stern layer model of electric double layer
on (a) silica and on (b) gibbsite. Protonated and deprotonated silanol
and aluminol groups are located at the “0” plane. Adsorbed cations (Na+,
K+) on silica and Cl− anions on gibbsite from the solution are located at
the “s” plane to neutralize partially the deprotonated silanol and proto-
nated doubly coordinated aluminol sites. The region between “0”and “s”
planes is the so-called Stern layer, and potential drop inside it is linear
because it does not contain any space charge. Beyond the “s” plane is
the diffuse part of electric double layer, and potential drop is exponen-
tial because of non-zero space charge density in the diffuse layer.
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tisite complexation (MUSIC) method33–35 treats all of them the
same and predicts that these surface groups are electrically
neutral in the pH range of 4 to 10. Bickmore et al.36 treated all
OH groups individually in an advanced model that incorpo-
rates the bond-valence theory and reveals the molecular struc-
ture of the surface ab initio. According to those calculations
one of the Al2OH groups per surface unit cell can be proto-
nated with a pK value around 5. Jodin et al.37 considered the
possibility of surface relaxation (e.g., the bending of the
Al–O–H angle) in their bond-valence MUSIC calculations, and
yielded the pK value for protonation of the basal doubly co-
ordinated surface group in the range of 2 to 4. The latter two
calculations concur with some experiments38–40 about the
reactivity of doubly coordinated groups. Based on these
studies, we tentatively describe our data on gibbsite by the fol-
lowing surface speciation reactions.

Al2OH2
þ (+ Al2OHþHþ with K2H ð21Þ

Al2OH2
þCl�(+ Al2OH2

þ þ Cl� with KA ð22Þ

The charge densities at the “0” and “s” planes are then
given by

σ0 ¼ efAl2OH2
þg þ efAl2OH2

þCl�g ð23Þ

σs ¼ �efAl2OH2
þCl�g ð24Þ

The structure of the electric double layer near gibbsite is
sketched in Fig. 2(b). Because the charge density between the
“0” plane and the “s” plane vanishes, the electrostatic poten-
tial ψs at the “s” plane can be calculated again from the poten-
tial and charge density at “0” plane using eqn (20).

For the calculation of the charge distribution and the
forces, we now use the σI = σ0

I + σs
I for the silica tip as obtained

in the preceding section and combine it with σII = σ0
II + σs

II for
the gibbsite surface. The characterization of the surface charge
and surface chemistry of the AFM tip, first using a silica sub-
strate, is thus a necessary prerequisite to characterize the sub-
strate of interest.

3 Results and discussion
3.1 Least-squared fitting

The force vs. distance curves calculated using the theoretical
model depend on a number of parameters, including the
radius of the AFM tip R, the Hamaker constant A, the site
density Γ, the capacitance of the Stern layer Cs, and the equili-
brium constants Ki of the surface speciation reactions con-
sidered. The last are the primary parameters of interest here.
Therefore, we use reasonable estimates for the former ones
based on tip calibration measurements and literature values as
described in Table 1. Only the equilibrium constants Ki are
used as free parameters to optimize the agreement between
experimental data and calculated model curves. We define a
merit function

QðK1;K2; . . .Þ ¼ 1
PN
j¼1

ðFtðDjÞ � FexpðDjÞÞ2
ð25Þ

where Ft and Fexp denote the theoretically calculated and
the experimentally measured force value at the distance Dj.
Best fit values for the fit parameters are calculated by maximiz-
ing Q within a reasonably chosen range of values for the Ki’s
(or the corresponding pKi’s) under consideration. Such ranges
are chosen based on literature data and refined manually in
the course of the fitting procedure. To increase the speed of
the optimization procedure, we evaluate Ft(D) on a reduced
number of points, N = 15, chosen equidistantly within the
range 2 < D < 15 nm and determined Ft(Dj) by interpolating
between the adjacent Ft(D) values. Empirical tests showed that
the use of a larger number of evaluation points had no signifi-
cant effect on the fit quality and the resulting optimum para-
meter values, while significantly reducing the speed of the fit
process because the optimization involves the solution of the
non-linear Poisson–Boltzmann equation at each distance. The
minimum separation of 2 nm was chosen to minimize the
influence of short range forces such as hydration forces that
are not included in the physical model. The maximum value
of 15 nm is based on the rapid decay and the dominance of
noise beyond that distance for the conditions of the present
set of experimental data.

Table 1 Parameters of used in force analysis based on the CR-complemented DLVO theory. Note: the pK values of surface reactions are optimized
to fit the experiments, while other parameters are measured or kept to literature values

Surfaces

Parameters Silica Gibbsite basal plane

“0” plane reaction SiOH ⇌ SiO− + H+ with pK1H Al2OH2
+ ⇌ Al2OH + H+ with pK2H

“s” plane reaction SiO−Czc+ ⇌ SiO− + Czc+ with pKC Al2OH2
+Aza− ⇌ Al2OH2

+ + Aza− with pKA
Stern layer capacitance Cs 2.9 F m−2 (ref. 59) 1.49 F m−2 (ref. 38)
Site density of surface group Γ 8 nm−2 (ref. 59) 13.8 nm−2 (ref. 38 and 59)
Hamaker constant A 0.65 × 10−20 J (ref. 26 and 29) 1.2 × 10−20 J (ref. 29 and 39)
Stern layer thickness ds 0.4 nm (ref. 35 and 60)
AFM Tip diameter 2R 52 ± 5 nm (SEM measurement)
pH of solution 5.8 (measurement)
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3.2 Surface charge and optimization of pK values

Very good fits of individual force curves are easily obtained
upon optimizing the merit function Q for each individual fluid
composition both on silica and on gibbsite surfaces (Fig. 3).
For data acquired on silica, the deviation between model curve
and experimental data can be reduced below the symbol size
in Fig. 3 for the entire parameter range of interest, i.e. for 2 <
D < 15 nm. The optimized model curves that include the CR
boundary condition (solid lines in Fig. 3) describe the experi-
mental data of a significantly wider range than the approxi-
mate solutions for constant potential (CP) and constant charge
(CC) solutions (dashed lines in Fig. 3). For gibbsite, the
description of the data by the CR solution is also much better
than for the CC and CP solutions. Yet, the quality is not quite
as good as in the case of silica and deviations are seen already
at tip sample separations of ≈2 nm.

The fit curves shown in Fig. 3 result from a simultaneous
global optimization of the data for all salt concentrations. If
optimized individually for each concentration, much better
fits than shown in the figure can be obtained. Yet, such an
approach would be inconsistent with our modeling that
assumes concentration-independent equilibrium constants for
each reaction. However, it turns out that good agreement
between model curve and experimental data for any single salt
concentration is not sufficient to determine a unique set of

equilibrium constants. Rather, a whole range of combinations
of fit parameters provides fits of similar quality. Fig. 4(a) illus-
trates this observation for a specific data set, where deprotona-
tion of the silanol group and adsorption of Na+ ions were
taken into account in the modeling. This representation of the
merit function Q clearly demonstrates that the optimum
values of pK1H and pKNa are highly correlated. Fits of equally
excellent quality can be obtained for the wide range of para-
meters shown by the narrow ridge forming the maximum of
Q(pK1H, pKNa). These results clearly show that a reliable
measurement of pK values based on force curves for a single
fluid composition is impossible when several surface reactions
occur simultaneously.

In fact, this result does not come as a surprise. As the
theoretical analysis described in the preceding section
showed, the electrostatic part of the disjoining pressure, eqn
(4), experienced by the AFM tip depends on the surface chem-
istry only via the boundary conditions, ψ(ds) and ψ(D − ds) or
via the corresponding charge density of the diffuse layer, i.e.
via the global charge neutrality condition, eqn (14). Any combi-
nation of surface chemical reactions with adequate fractional
adsorption that generates the same surface charge gives rise to
the same force in the AFM measurement and can thus not be
distinguished, as shown in Fig. 4(b). For the present situation,
deprotonation and adsorption of monovalent Na+ (or K+)
cations give rise to the same surface charge density and thus

Fig. 3 A comparison of experimental tip-sample force curves (taken from ref. 12) with theoretical force curves for the silica-silica (coded in red)
and silica-gibbsite(coded in blue) interaction in aqueous solutions of two monovalent salts (NaCl: first row, KCl: second row) under three different
concentrations (1 mM: left column, 10 mM: middle column and 100 mM: right column). Symbols: laterally averaged AFM forces; solid lines: force
prediction using charge regulation (CR) with globally optimized pK values (see Fig. 5); dashed lines: constant charge (CC) and constant potential (CP)
force predictions.
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to the same force. The small difference arising from the
different locations in the “0” plane and in the “s” plane is
apparently insufficient to create a significant difference in the
forces. Specifically, Fig. 4a shows that the experimental data
can be explained by assuming exclusively (de-) protonation
with a value of pK1H ≈ 7.05 with negligible Na+ adsorption
with arbitrary pKNa < 0.5. If pKNa is assumed to be larger than
0.5, pK1H has to be decreased slightly to compensate for the
weak adsorption of Na+.

Similar results are obtained for other concentrations and
for KCl, both on silica and on gibbsite surfaces (data not
shown). For each combination of materials, the correlation
curves on silica have the same qualitative shape. A differently
shaped family of correlation curves is obtained on gibbsite.
Yet, the exact location of the curves in the parameter space
depends on the salt concentration: for higher salt concen-
trations the contribution of adsorbing Na cations is more pro-
nounced, for lower salt concentrations the effect of
deprotonation is dominant. The fact that the exact location of
the correlation curves depends on the salt concentration is a
direct indication that the adsorption of Na+ ions does indeed
contribute to the surface charge on silica. Because the surface
chemistry should be same for all conditions, we can further
constrain the equilibrium constants by requiring that one con-
sistent set of pK values – pK1H and pKC for silica, and pK2H

and pKA for gibbsite – should be obtained by simultaneous
optimization of Q for all salt concentrations investigated.
Fig. 5 shows the merit function Qall for both silica and gibbsite
surfaces determined from all the concentrations in the range
of 1 mM to 100 mM (i.e., 1, 3, 10, 30, 100 mM). Forces
obtained at the lowest (0.5 mM) salt concentration were

excluded from the analysis because the measured forces were
overall too low for reliable fitting within the distance range of
interest.

Fig. 5a shows the merit function for a superposition of data
acquired for the silica surface at different NaCl concentrations.
Indeed, it yields a well-defined combination pK1H = 6.9 ± 0.3
and pKNa = 1.65 ± 0.1 for which the model curves simul-
taneously describe all experimental force curves. From the
measurements with KCl solutions the corresponding optimum
values are pK1H = 6.9 ± 0.3 and pKK = 2.0 ± 0.2, as shown in
Fig. 5b. Note that the value for pK1H obtained for the two
different salts coincides as one should expect. The deprotona-
tion of silanol groups is one of the most widely studied surface
reactions in the literature and the reported pK1H values
(obtained with potentiometric titration) typically fall in the
range 7 to 7.5.33,41–44 Our result includes the lower part of this
range. The exact values are known to depend on the origin and
the specific preparation conditions of the silica surfaces. For
instance, the surface chemistry of our oxidized surfaces of
bulk silicon both on the tip and on the sample surface is
expected to differ from bulk amorphous silica such as the one
precipitated from silanes in a Stöber reaction that is frequently
used in colloidal studies of silica. In addition, we note that
deviations of the order of 0.5 pK units may also result from
uncertainties in other experimental parameters such as the
exact geometry and radius of the AFM tip and physical
assumptions related to the Poisson–Boltzmann mean field
approach.

Comparison between NaCl and KCl solutions shows a
somewhat stronger adsorption for K+ than for Na+ ions on
silica. This difference, which was already visible in our

Fig. 4 Correlation of fit parameters pK1H and pKC on silica surface for a single salt concentration (10 mM NaCl). (a) Contour plot of the fit quality
merit function Q (inverse of squared error). (b) Contour plot of net surface charge, σ0 + σs = −σd, in the limit D → ∞, which illustrates that the quantity
probed by the AFM experiment is the diffuse layer charge. Any pK pairs, (pK1H, pKC), falling on the cyan thick solid line produce a same diffuse layer
charge density of −0.068e/nm2, and thus a same force.
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approximate analysis of the data based on the constant charge
model,12 is consistent with earlier reports in the literature
based on SFA,21 colloidal probe AFM,26 and electrokinetic
measurements.45 It is consistent with the idea that the slightly
larger K+ ions are more polarizable than Na+ and hence experi-
ence a somewhat stronger dispersion attraction towards the
surface.46 Simultaneously, the hydration shell of K+ is some-
what less strongly bound. This may lead to somewhat weaker
hydration repulsion between the hydrated ion and the
hydrated silica surface.

Similar results can be obtained for gibbsite surfaces. From
the plots, we extract optimum values of pK2H = 5.4 ± 0.3 and
pKCl = 1.4 ± 0.6 for the measurements with NaCl (Fig. 5c) and

pK2H = 4.6 ± 0.2 and pKCl < 0.7 for the measurements with KCl
(Fig. 5d). The quality of the analysis for gibbsite is less satisfy-
ing than in the case of silica discussed above. First, the
maximum value of Qall for the optimum combination of pK
values is more than an order of magnitude lower, showing that
the quality of the fits is not as good as for silica. Second, if the
surface speciation reactions, eqn (21) and (22), chosen to
model the data are correct, the values of pK2H and pKCl should
actually be the same for both NaCl and KCl solutions. The ana-
lysis shows that this is not quite the case. Given the fact that
the experimental data are obtained in the course of the same
measurement as the very satisfying results on silica, we con-
clude that the quality of the experimental data as such cannot

Fig. 5 Contour of the inverse of squared error (Qall) in the parameter space defined by pK values of surface reactions. (a) Qall in parameter space
(pK1H, pKC) for silica in NaCl solution. (b) Qall in parameter space (pK1H, pKC) for silica in KCl solution. (c) Qall in parameter space (pK2H, pKA) for gibb-
site in NaCl solution. (d) Qall in parameter space (pK2H, pKA) for gibbsite in KCl solution. For silica surface, local maxima in (a) and (b) provide best
estimates of pK1H = 6.9 ± 0.3, pKNa = 1.65 ± 0.1, pKK = 2.0 ± 0.2. For gibbsite surface, local maxima in (c) and (d) provide best estimates of pK2H = 5.4
± 0.3/pKCl = 1.4 ± 0.6 for NaCl and pK2H = 4.6 ± 0.2/pKCl < 0.7 for KCl, respectively.
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be the cause of these deviations. This suggests that the specific
surface speciation model chosen to describe the data is not
appropriate. In fact, we tested a few other possibilities of
surface complexation, such as the last two reactions given in
eqn (16). None of them yielded more consistent results than
the reactions chosen here. Possibly, the actual surface chem-
istry is in fact much more complex and requires, e.g. the invol-
vement of hydration water. The latter was found to be
necessary to understand the adsorption of divalent Mg2+ and
Ca2+ cations onto the same surface, as atomically resolved
images of these ions on gibbsite in combination with extensive
density functional theory (DFT) calculations showed.12 For
those ions, the DFT calculations suggested that six partially
deprotonated molecules of hydration water play a crucial role
for the observed effective surface charge. For monovalent
cations of Na+ and K+, the same type of calculation did not
reveal a comparable ordered arrangement of adsorbed ions.
Yet, it is clear, also from molecular dynamics simulations,11,47

that rather complex configurations of cations and water mole-
cules can appear at clay-electrolyte interfaces that may be too
complex to be captured by a few simple surface complexation
reactions as eqn (21) and (22). Moreover, the observed hetero-
geneity of the force curves on the gibbsite particles points to
an intrinsic heterogeneity of the surface charge of the particles
that might be caused by intrinsic structural and/or chemical
defects on the surface. In this context it is worth noting that
the absolute value of the surface charge densities in the
present experiments is rather low in all cases, typically of the
order of 0.1e/nm2 (see Fig. 6). For a typical tip-sample inter-
action area of the order of 500 nm2, this means that the tip
typically probes no more than a few tens of charges on each
surface. Surface defects carrying – say – 10 elementary charges
therefore already produce substantial deviations that under-
mine the idealized approach of the surface speciation reac-

tions discussed in section 2.3. These considerations also
highlight the remarkable degree of homogeneity of the silica
surfaces.

4 Discussion
4.1 Surface charge density

Fig. 6 shows the effective surface charge density σ0 + σs of
silica and gibbsite in both NaCl and KCl solutions as calcu-
lated based on the surface speciation reactions with optimized
pK values for individual solid-electrolyte interfaces, i.e.
extrapolated to infinite tip-sample separation. On both sur-
faces, the absolute value of the surface charge density is found
to increase with increasing salt concentration. This is due to
the fact that increased concentration improves the electrostatic
screening and thereby reduces the cost in free energy involved
in the creation of surface charge.

Next to the solid and dashed lines representing the results
with current charge regulation model, the graph also shows as
symbols the results from approximate analysis of the tails of
the force–distance curves with constant charge/constant poten-
tial model reported earlier in ref. 12. The earlier data display
the same trends as the present more sophisticated analysis,
yet, that analysis clearly underestimated the absolute values of
the charge density. Considering the fact that the charge regu-
lation model produces much better fits of the experimental
force curves than the constant charge/constant potential
model (see Fig. 3) does, it is thus reasonable to believe that the
surface charge extracted from charge regulation model is
indeed more reliable.

Note that the surface charge densities obtained for gibbsite
should be trusted notwithstanding the uncertainties discussed
in the preceding section. As our discussion of Fig. 4 showed,
good fits of the force curves imply a correct measurements of
the surface charge density. Yet, they do not guarantee the
correct identification of the surface chemistry. For the rest of
the discussion, we will focus on silica surfaces and explore the
consequences of the specific surface speciation reactions that
we can trust.

4.2 Charge regulation and local fluid composition

Using the optimized combination of pK values, we can analyze
the composition of the fluid and the coverage of specific
species on the silica surface as a function of the tip-sample
separation. Fig. 7 summarizes some in general terms well-
known (see e.g. ref. 14) basic results for the distribution of
protons that arises from the self-consistently determined
potential ψ(z) using the Boltzmann distribution. If the separ-
ation of tip and sample is large compared to the Debye length,
the system displays a typical behavior of the so-called thin
double layer limit. The surface charges are screened in a
diffuse layer extending a distance of the order of the Debye
screening length. In the middle of the gap, the electrolyte has
its bulk composition. Under these reference conditions,
charge regulation has no effect, as shown by the overlapping

Fig. 6 The unregulated (no interaction between two surface, i.e., D →
∞) diffuse layer charge density, σ0 + σs, as a function of electrolyte con-
centration for two monovalent electrolytes used in the current study.
For comparison purposes, the results determined from CC/CP bound-
aries in ref. 12 is also included in the plot.
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blue curves on the top of Fig. 7. For tip-sample gaps of the
order of the Debye length or less, the effect of charge regu-
lation becomes apparent. The local concentration of protons
increases with decreasing tip-sample separation. Charge regu-
lation then leads to a partial re-adsorption of protons to the
solid surface, as a comparison between the dotted lines for the
CC boundary and the solid lines for the CR boundary shows.
A CP boundary condition (dashed lines) would lead to even
more pronounced re-protonation of the surface. At the smal-
lest separation (black curves), the proton concentration is
almost constant all across the gap, as expected for the thick
double layer limit. Note that the Na+ and the K+ ions follow
exactly the same Boltzmann distribution, except for the gener-
ally different limiting concentration in the bulk.

It is also interesting to consider explicitly the consequences
for the composition of the surface. It turns out in the first
place that the total degree of deprotonation, Γ − {SiOH}, is
rather low as expected for the conditions of our experiments at
pH ≈ 6, see Fig. 8(a). Given the typical site density of 8 sites
per nm2, this low degree of deprotonation implies that the
average separation between charged sites on the surface is of
the order of a few nanometers, which is comparable to the dia-
meter of supersharp AFM tips that are typically used for high
resolution AFM imaging. From that perspective, it is not sur-
prising that supersharp tips hardly feel the presence of such
small degrees of surface charge. One may also question,
whether the use of a continuous surface charge density is still
appropriate under such conditions. The second notable
feature in Fig. 8(a) is that most of the deprotonated silanol
groups on the surface directly adsorb a cation from the solu-
tion. Addition of salt thus promotes the replacement of
surface-bound protons by cations. This observation holds for
all conditions shown in Fig. 3, and is slightly more pro-
nounced for the slightly more strongly adsorbing K+ ions than
for Na+. The majority of the surface charge is thus compen-

sated directly in the Stern layer rather than in the diffuse part
of the double layer. This conclusion is consistent with X-ray
reflectivity studies,48,49 optical measurements,50,51 and recent
molecular simulations.47,52 One consequence of this obser-
vation is that the surface charge as determined from an AFM
(or SFA) force measurement, which is based on the ion distri-
bution in the diffuse layer, is always lower than the charge
density determined by a titration measurement that measures
the total number of protons or ions adsorbing to or desorbing
from a surface.53

As a final remark, Fig. 8(a) also shows that the coverage of
the various species on the surface does not depend very
strongly on the tip-sample separation. As expected, both
protons and cations condense onto charged SiO− sites as tip
and sample are brought closer together and the total residual
surface charge decreases, as shown schematically in Fig. 8(b).
Yet, the total variation between infinite separations and a
minimum separation D ≈ 1 nm, down to which the model is
reasonably applicable, is typically of the order of several
percent. This implies that the chemical composition of the
surface in this range is not dramatically altered by the pres-
ence of the AFM tip. This conclusion is crucial for the
interpretation of AFM measurements in general.7,11,12,54–57 It

Fig. 8 (a) Fraction of total deprotonated and ion-occupied surface sites
in solutions of NaCl and KCl at 10 mM for silica/silica interaction. (b)
Schematic illustration of proton and ion transfer during the course of
charge regulation as the AFM tip move towards the silica sample. Upon
decreasing the tip-sample distance both protons and cations migrate
from the solution to the silica surfaces.

Fig. 7 Effect of charge regulation on pH/proton concentration distri-
bution between tip and silica sample within 10 mM NaCl solution for
tip-sample separations of D = 50 nm (green), 5 nm (red) and 1 nm (black)
corresponding to weak, intermediate and strong double layer overlap
(Debye length: 1/κ = 3 nm).
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illustrates that the structure of a solid–electrolyte interface as
probed by AFM in high resolution spectroscopy or in high
resolution imaging mode is hardly affected by the presence of
the tip. While charge regulation has a strong effect on the net
surface charge and hence the measured forces, as shown in
Fig. 3, the fraction of adsorbed ions still provides a fairly good
representation of a single interface in contact with a bulk elec-
trolyte for all the conditions studied here.

Some caveats apply. Obviously, this conclusion holds
within the limitations of the present mean field Poisson–Boltz-
mann model. Under conditions of atomic resolution imaging,

where short range chemical and hydration forces play an
important role, the picture may be altered. Moreover, the
present considerations are limited to a symmetric system, in
which tip and sample are made of the same material. If the
material of tip and sample behave very differently, e.g. one
acting as a proton donor and the other one as a proton accep-
tor, the effect of bringing of close proximity may be more pro-
nounced. Yet, our results obtained so far all suggest that the
tip can be reasonably well considered as a moderate pertur-
bation of a state that is overall governed by the properties of
the individual solid–electrolyte interface.

Fig. 9 Calculated fraction of surface complexes for individual silica-electrolyte interfaces as a function of pH and salt concentration. (a) {SiO−}/Γ in
NaCl (left) and KCl (right) solutions. (b) {SiO−Na+}/Γ complexes (left) and {SiO−K+}/Γ complexes (right) in the corresponding salt solutions. The pK
values are those globally optimized in Fig. 5. Plot (b) also includes the contour lines of two dimensionless parameters,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fSiO�Cþg

p
=κ (white dash

lines) and 2a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fSiO�Cþg

p
(red dash lines). (Note the difference in gray scale in a) and b).).
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4.3 Extrapolation to variable pH and limitations of Poisson–
Boltzmann approach

The good consistency of the analysis presented so far for
silica surface, encourages us to extrapolate our data to a
broader range of fluid compositions, including in particular
conditions of variable pH. Substituting the globally opti-
mized pK values of deprotonation and Na+ and K+ adsorption
into our numerical scheme, we calculate the concentration of
surface species in the limit D → ∞ for silica surface, and the
results are shown in Fig. 9. The calculations display several
expected qualitative trends. For both NaCl and KCl, the frac-
tion of free deprotonated SiO− groups monotonically
increases with increasing pH at all concentrations (Fig. 9a).
In contrast, the behavior as a function of the salt concen-
tration at fixed pH is non-monotonic because two opposing
processes compete. On the one hand, the increasing salt con-
centration improves the screening of electric fields and
thereby reduces the energetic cost for the system to increase
the surface charge by deprotonation. This trend prevails for
low salt concentrations. This process competes, however,
with the formation of SiO−C+ complexes on the surface
according to eqn (15). At higher salt concentrations, the
latter process dominates and causes a decrease of the frac-
tional coverage of SiO−, along with an increase of {SiO−C+}.
As expected, {SiO−C+} increases monotonically both with
increase pH and with increasing salt concentration, see
Fig. 9b.

This extrapolation of the model predictions to a broader
range of fluid compositions also allows for a systematic discus-
sion of the limitations of the applicability of the Poisson–
Boltzmann treatment applied in this study. Various deviations
from the simple Poisson–Boltzmann picture have been dis-
cussed in the literature.58 The most important corrections
include the breakdown of the mean field approach due to
direct electrostatic correlations between adjacent ions and the
neglect of the finite radius a of the ions. A criterion for the val-
idity of the mean field approach can be determined by com-
paring the average separation between adjacent adsorbed
cations C+ on the surface to the Debye screening length. The
white solid lines in Fig. 9b show iso-lines of fixed values of the

ratio
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fSiO�Cþg

p
=κ. If this ratio is not too large, many screen-

ing charges are found between adjacent surface charges and
hence the mean field picture is expected to hold – and vice
versa. Fig. 9b thus shows that the mean field approach primar-
ily becomes questionable at high pH for low salt concen-
trations, i.e. for conditions of poor screening but nevertheless
high degrees of deprotonation.

Similarly, we can consider the ratio between the diameter
2a of the (hydrated) ions and the average distance between

adsorbed ions, i.e. 2a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fSiO�Cþg

p
. The corresponding red iso-

lines in Fig. 9b show that neglecting the finite ion radius is
acceptable provided that the pH and salt concentration are not
simultaneously high. For the specific conditions of our experi-
ments (pH ≈ 6 and c∞ = 5 × 10−4 to 0.1 M) the two criteria are
indeed decently fulfilled, as Fig. 9b shows.

5 Conclusions

We used AFM force measurements with sharp tips to probe
the surface chemistries/charging behavior of two interacting
solid surfaces in aqueous solutions of NaCl and KCl of variable
concentration. In agreement with earlier studies using col-
loidal probe force microscopy, we find that the measured
force–distance curves between tip and sample can be
described quantitatively down to tip-sample separations of
1–2 nm by taking into account charge regulation (CR), i.e.
adsorption/desorption of protons and salt ions as induced by
the proximity of tip and sample. For silica surfaces, our sys-
tematic approach of simultaneously analyzing experimental
data obtained for a variety of salt concentrations allows for
quantifying the equilibrium constants for the deprotonation of
silanol groups and for the adsorption of Na+ and K+ cations.
Given the fact that the vast majority of AFM experiments are
carried out with tips made of oxidized silicon, our results can
be used to quantify the charge of most AFM tips in some of
the most common aqueous electrolyte solutions. Our measure-
ments on the gibbsite surface illustrate the usefulness of this
knowledge. Although the identification of the correct surface
speciation reactions fails on the more complex gibbsite sur-
faces, the ability to quantify the charge density on the AFM tip
nevertheless enables the measurements of the net surface
charge density and thus provides a useful characterization of
the material. In contrast to earlier colloidal probe AFM
measurements, this is now possible in AFM measurements
with sharp tips and a lateral resolution of the order of the tip
diameter (in nanometers).
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We report the observation of a Plateau instability in a thin filament of solid gel with a very small elastic

modulus. A longitudinal undulation of the surface of the cylinder reduces its area thereby triggering

capillary instability, but is counterbalanced by elastic forces following the deformation. This competition

leads to a nontrivial instability threshold for a solid cylinder. The ratio of surface tension to elastic

modulus defines a characteristic length scale. The onset of linear instability is when the radius of the

cylinder is one-sixth of this length scale, in agreement with theory presented here.
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The Rayleigh-Plateau instability (RPI) [1–4] results from
the tendency of a given volume of liquid to reduce its area at
constant volume. The area of a geometrical cylinder is
obviously not at a minimum, this one being reached, as is
well known, for a sphere. A long-wave modulation of the
surface of a cylinder is unstable: near the maxima of
the radius, the Laplace pressure, which is dominated by the
azimuthal curvature, decreases and pushes the fluid outward,
the converse being true for the minima of the radius where
the increase of the Laplace pressure pushes the fluid inward.

Although surface tension exists in solids as well, its
effect on the pattern formation is believed to be unobserv-
able at macroscopic scale because surface energy is negli-
gible compared to elastic energy of deformation. Perhaps
the only phenomenon where surface tension plays a role is
crystal faceting [5] where it does not compete with elastic
forces. The RPI may be, however, relevant in soft solids,
such as those found very often in biology, and so may play
a role in such biological processes as generation of fila-
ments, formation of beaded forms in myelinated nerve
fibers, etc. It also provides a unique method for fabricating
undulating cylinders with a wavelength controlled by
physical parameters. Such cylinders with undulation pe-
riod in the range of optical wavelength could show, for
instance, forbidden wave bands for the propagation of
light.

In solids, contrary to liquids, the energy has a volume
part that changes alongside modulation of the external
surface. As is often noticed, the balance between the two
kinds of energies, capillary and elastic, depends on a
quantity with the dimension of length l ¼ �=�, where �
is surface tension and � is the elastic shear modulus. In

usual solids, this is a very small length scale: because of its
origin in atomic interactions, one expects l to be of the
order of the range of atomic interactions, about a fraction
of a nanometer. Therefore the capillary effect, in the nu-
merator of the small length scale, should be typically
negligible. Nevertheless, in a very soft solid like a gel
just above the percolation threshold, this length scale can
be macroscopic. The reason is that the complex molecular
structure of such materials reduces by many orders of
magnitude the ‘‘typical’’ value of the shear modulus com-
puted from the standard molecular parameters, such as the
size of an atom and the energy of a covalent bond.
Measured values for � are few tens of mN=m and for �
measured values are few tens of Pa (very small by com-
parison with ordinary materials); therefore, l, as well as the
expected typical length scale for elastic RPI, may go up to
the millimeter range, well above any microscopic length
scale of this kind of material.
To demonstrate RPI in a solid, we have used a standard

agar gel (Merck KGaA, Germany) dissolved in purified
water. Small amounts of methylene blue were added to
agar solutions to aid observations. Agar is known to dis-
solve in boiling water and to form a gel upon cooling to
about 35 �C [6,7]. Upon cooling, the shear modulus first
rapidly increases and then stabilizes (Fig. 1). A cooled gel
behaves as an incompressible elastic solid over a wide
frequency range (at least from 300 to 10�3 Hz; Fig. 1).
We have carefully checked rheological properties of agar
gels and measured the shear modulus at various concen-
trations (from 0.5% to 0.16%).
The experiments are carried out as follows. Liquid solu-

tions of agar (90 �C) with various concentrations are first
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injected in cylindrical moulds made of cellular polystyrene.
These moulds are fabricated using two cuboid pieces of
cellular polystyrene (3� 0:5� 0:5 cm3). One of the larger
faces of each piece is heated just above the glass transition
temperature of polystyrene. The two hot sides are then
assembled and a 3 cm long copper wire of a desired
diameter is inserted between them. This wire is removed
after cooling at room temperature, leaving a hollow cylin-
der of the same dimensions within the polystyrene block.
We have checked by optical microscopy that the roughness
of the surface is less than 4 �m. The mould is then pre-
heated in order to prevent partial gelation before the liquid
is completely injected.

After injecting the agar solution and cooling for 5 h at
room temperature, the mould is dissolved in liquid toluene.
Total dissolution takes about 3 min. The strand of agar gel
is then released in toluene. The agar gel—toluene surface
tension � is roughly equal to the water-toluene surface
tension; this value is used in further computations. To
prevent the agar cylinder from wrapping up, the two ends
are fixed in a frame before releasing. This yields strands
measuring about 2 cm long floating in toluene. Depending
on the mould, their radius lies in the range 150–260 �m.

Depending on the initial strand radius �0 and the shear
modulus � of the agar gel, the growth of a surface insta-
bility takes place during the mould dissolution. The final
steady pattern is seen after dissolution is complete. Strands
of agar gel with a high concentration and/or a large radius
retain a cylindrical shape after the mould dissolution [Fig. 2
(a)]. Strands with a low concentration and a small radius are
systematically breaking into two during the dissolution. For
intermediate strands, surface undulations develop just after
dissolution and remain permanently [Figs. 2(b)–2(d)].
When an unstable filament is gently stretched in the middle,
and then released, it recovers its length and shape, thereby
demonstrating that the undulation pattern is stable. On the
contrary, if pure water is injected into the moulds instead of

the agar gel, the released strand breaks, as expected, into
separate spherical droplets.
We used toluene saturated with water to prevent shrink-

ing. This makes a fundamental difference between our
experiments and those reported by Matsuo and Tanaka
[8]. In their case, the instability is driven by diffusion of
the gel solvent into the miscible outer fluid. The slowly
developing instability they observe cannot be linked to a
RPI, because there is no sharp interface and so no surface
tension in their experiment.
Within the setup we used, the resolution for the ampli-

tude of the modulations is about 15 �m. To obtain the
critical elastic modulus (at a fixed radius) below which
cylinders remain straight, the amplitude is plotted as a
function of the elastic modulus and fitted by the power law

fð�Þ ¼ �ð���cÞ� (1)

with adjustable parameters �, �, and �c (Fig. 3); �c is the
shear modulus at the instability threshold. In this way, we
succeed in separating unambiguously the cases where a
cylinder is either stable or not. Figure 4 summarizes the
experimental stability data in the �� �0 plane. The plane
is divided into two areas, one corresponding to stable
straight cylinders and the other to unstable ones.
Just above the threshold [Fig. 2(b)], the instability leads

to a varicose shape. Farther away from the threshold, the
shape becomes more complicated, with large constant-
radius areas interrupted by constrictions [Fig. 2(d)]. In
the following, we focus on the physics near the threshold
[Figs. 2(a) and 2(b)]. The analysis far beyond the insta-
bility threshold requires a nonlinear theory that will be the
subject of future work.
Suppose that the surface of a cylinder is perturbed by a

small axisymmetric modulation from a constant radius �0

to �ðzÞ ¼ �0 þ �ðzÞ, where z is the coordinate along the
axis and �ðzÞ � �0 (Fig. 5). The mean curvature � of the
surface changes from 1=�0 to 1=�0 � �ðzÞ=�2

0 � �00ðzÞ.
This yields a Laplace pressure contribution �� to be added
to the boundary conditions (bc) for the normal stress on the
surface of the cylinder.

FIG. 2. Equilibrium shape of agar gel cylinders for different
values of the shear modulus. Radius is � ¼ 240 �m, surface
tension is � ’ 36:5 mN=m. Shear modulus varies from 12 to
27 Pa. Note the RPI instability for values of �=ð��Þ larger
than 6.2.

FIG. 1. Linear rheological properties of a 0.18% agar gel
hydrogel. The curves are obtained by dynamic oscillatory shear
tests, using a strain controlled rheometer (ARES-RFS from
TAInstruments) in Couette geometry. Left: Evolution of the
storage and loss moduli as functions of time. Right: Storage
and loss moduli as functions of the angular frequency 5 h after
cooling.
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Our material can be considered as incompressible, so
that its only relevant Lamé coefficient is the shear modulus
�. Using a variational formulation, we write the elastic
energy in the cylindrical coordinates r; z as

E ¼ 2�
Z

dz
Z �

0
drr

�
�

�
u2r;r þ u2z;z þ u2r

r2

þ 1

2
ður;z þ uz;rÞ2

�
� p

�
ur;r þ ur

r
þ uz;z

��
;

(2)

where ur; uz are the radial and axial displacements, the
indices preceded by a comma denote respective partial
derivatives, and p is the Lagrange multiplier imposing
the incompressibility condition

ur;r þ ur
r
þ uz;z ¼ 0: (3)

By variation with respect to the displacements ur and uz,
one gets the Cauchy-Poisson equations in cylindrical
coordinates:

�½2uz;zz þ ður;z þ uz;rÞ;r þ r�1ður;z þ uz;rÞ� � p;z ¼ 0;

(4)

�ður;zz � uz;zrÞ � p;r ¼ 0: (5)

The latter equation has been rearranged using the incom-
pressibility condition (3) and the identity

ur;rr þ ur;r
r

� ur
r2

¼
�
ur;r þ ur

r

�
;r
:

The two boundary conditions on the free surface r ¼
�ðzÞ express the continuity of stress (including the Laplace
capillary pressure), supplemented by two conditions of
smoothness at r ¼ 0. The Laplace pressure comes from
the variation of the capillary energy equal to the area of the
perturbed cylinder times surface tension �. Assuming
cylindrical symmetry, this energy reads

A ¼ 2��
Z

�ðzÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

;z

q
dz:

The variation of the capillary energy caused by changing
the shape of the surface of the cylinder reads

	A ¼ 2�
Z

	�ðzÞ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ �2
;z

q
� �;zz�ðzÞ

ð1þ �2
;zÞ3=2

�
dz:

This expression has to be added to the contribution 	Eb to
the variation of E, which comes from the boundary term
after integration by parts:

	Eb ¼ 2�
Z

�ðzÞ½	urð2�ur;r � pÞ
þ�	uzður;z þ uz;rÞ�dz;

where the integrand is evaluated at r ¼ �ðzÞ.
Writing now that 	�ðzÞ ¼ 	ur at r ¼ �ðzÞ, and requir-

ing (	Eb þ 	A) to vanish for any possible 	ur and 	uz,
one finds the following bc for the tangential and normal
stress on the surface:

ur;z þ uz;r ¼ 0; (6)

� �

�
ur
�2
0

þ ur;zz

�
þ 2�ur;r � p ¼ 0: (7)

FIG. 3. The modulation amplitude as a function of the shear
modulus for a fixed radius of the strands (� ¼ 240 �m). The
solid line is the best fit according to Eq. (1) with �c ¼ 25:6 Pa,
� ¼ 34:1 �m, and � ¼ 0:71.

FIG. 4. A series of agar cylinders with different shear modulus
has been investigated for each radius. The empty symbols
correspond to stable cylinders and filled symbols to unstable
cylinders acquiring a varicose shape. The parametric plane �0 �
� is separated into two domains by the theoretical curve
�=ð��0Þ ¼ 6 (without fitting parameters) derived in this Letter.

FIG. 5 (color online). Sketch of a straight cylinder before and
after a varicose perturbation. The energy increment may be of
either sign, depending on the radius, the surface tension, and the
shear modulus.
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In the last condition, the uniform equilibrium pressure
inside the unperturbed straight cylinder given by the stan-
dard Laplace value, �=�0, has been subtracted from p. The
problem of linear stability amounts to finding a nontrivial
solution of Eqs. (4), (5), and (3) with the bc (6) and (7),
imposed at r ¼ �0.

In a standard way, we assume a harmonic z dependence
of any physical quantity of the order of the perturbation
�eikz with a wave number k. Then one can express from
Eq. (4) pðr; kÞ as a function of v ¼ ur and its derivatives,
and use the result in (5) to get a fourth-order equation for v:

ðL� k2Þ2v ¼ 0; L ¼ d2

dr2
þ 1

r

d

dr
� 1

r2
: (8)

Omitting terms diverging at r ¼ 0, the general solution of
Eq. (8) is found by using theWronskian method and can be
presented as

vðrÞ ¼ �I1ðkrÞ þ �k2
�
K1ðkrÞ

Z �

r
I21ðkr0Þr0dr0 � I1ðkrÞ

�
Z �

r
r0I1ðkr0ÞK1ðkr0Þdr0

�
; (9)

where Ia and Ka are the modified Bessel function of
first and second kind of order a, respectively, and � and
� are integration constants. Using Eqs. (3)–(5), the bc (6)
and (7) at r ¼ � can be expressed in terms of v and its
derivatives.

These bc involve the third derivative of v at most,
consistent with the fact that Eq. (8) is of the fourth order.
Functions singular at r ¼ 0 have been excluded by the
particular choice of solution in Eq. (9). Using the general
solution given by Eq. (9) in the bc (6) evaluated at r ¼ �0

and taking note that the integrals in (9) vanish at this
point yields � ¼ 2�. Upon this substitution, we find
from the bc (7) that the nontrivial solution exists at the
critical value

�c ¼ 2��0

1� �2
0k

2

�
2k�0I0ðk�0Þ

I1ðk�0Þ � 1

�
: (10)

Instability occurs at � > �c. It first appears in the long-
scale mode k ! 0 at �cð0Þ ¼ 6��0. The instability limit
diverges at k ! 1=�0.

The curve representing the equation � ¼ 6��0 is plot-
ted in the �� �0 plane in Fig. 4. The toluene-agar gel
surface tension is taken as the measured value � ¼
36:5 mN=m. This curve, directly following from the theory
with no adjustable parameters, well matches the boundary
between the two domains (for stable or unstable cylinders)
detected experimentally. The finite wavelength observed in
experiments may be either an indication of a slight sub-
criticality of the instability or a manifestation of nonlinear
effects, necessarily present when the instability is observed
at the macroscopic scale.

This above exact result for �c has been viewed as an
approximation by Barrière et al. [9] who have used this

approach to explain pattern formations during shrinkage of
polymer gels reported by Matsuo and Tanaka [8]. In these
experiments, the swollen gel in the cylinder becomes sur-
rounded by a shrunken skin of macroscopic thickness.
Assuming that the skin acts as an effective surface tension,
Barrière et al. have found that the orders of magnitude
might be in the right range to explain surface instability
observed by Tanaka and Matsuo [9]. In these experiments
the instability was, however, driven by a skin action
modeled by a surface tension rather than by capillarity.
Inferring surface tension out of a macroscopic concentra-
tion gradient may be problematic: according to the
Kirkwood-Buff formula [10], surface tension requires an
anisotropic stress tensor in the transition region. Such an
anisotropy certainly exists near the interface between the
water of our gel and toluene because of their immiscibility,
but does not a priori exist for two miscible phases, like
those of Tanaka and Matsuo. The main distinctive features
of our experiments are (i) far smaller elastic moduli of agar
gels and (ii) absence of a macroscopic skin at the agar gel
surface. The last point is particularly important, and the
good agreement between theory and our experiments for
the onset value is a strong argument in favor of capillary
effects as the cause of the observed instability.
In conclusion, we have given experimental evidence of

Rayleigh-Plateau instability in a cylinder of soft solids. Its
onset is well described by theory. Contrary to the RPI in
liquids, the instability evolves to a steady wavy pattern
along the cylinder. From the experiments we conjecture
that, beyond a second critical (nonlinear) threshold, the
final state is a set of disconnected droplets of solid, like in
the case of a fluid cylinder.
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Liquides Soumis aux Seules Forces Moléculaires
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Abstract

The laws of wetting are well known for drops on rigid surfaces but change
dramatically when the substrate is soft and deformable. The combination
of wetting and the intricacies of soft polymeric interfaces have provided
many rich examples of fluid–structure interactions, both in terms of phe-
nomenology and from a fundamental perspective. In this review we discuss
experimental and theoretical progress on the statics and dynamics of soft
wetting. In this context we critically revisit the foundations of capillarity,
such as the nature of solid surface tension, the microscopic mechanics near
the contact line, and the dissipative mechanisms that lead to unexpected
spreading dynamics.
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Neumann’s law:
vectorial balance of the
three surface tensions
at the contact line,
traditionally used for
liquid subphases

Wetting ridge:
localized elastic
deformation of the
substrate below the
contact line

Viscoelastic braking:
slowing down of
contact-line motion
due to dissipation
inside a viscoelastic
substrate

Surface tension:
excess surface force
per unit length; often
called “surface stress,”
but here we strictly
reserve the term
“stress” for the bulk
force per area

1. INTRODUCTION: FROM RIGID TO SOFT WETTING

A liquid drop sitting on an ordinary solid does not induce any significant deformation of the
surface. The angle made at the contact line is selected by surface energies according to Young’s
law. By contrast, a liquid drop floating on another liquid will strongly deform the interface, with
contact angles selected by Neumann’s law. Soft compliant substrates, typically reticulated polymer
networks, are in between these two extreme cases: They do deform under the effect of capillary
forces, but in contrast to liquids, they exhibit an elastic resistance.

The systematic exploration of soft wetting phenomena is fairly recent, spurred by improving
technology to tune the properties of soft matter and by progress on elastocapillary phenomena in
general—the latter received an extensive review by Bico et al. (2018). The mechanics of extremely
soft materials originates from a competition between bulk elasticity and surface effects (Mora
et al. 2010, Style et al. 2017), providing a new playground for material design. Applications are
numerous and range from adhesives (Autumn et al. 2000, Boesel et al. 2010, Jagota & Hui 2011)
to slippery surfaces (Lafuma&Quéré 2011,Wong et al. 2011, Schellenberger et al. 2015, Solomon
et al. 2016), highly stretchable synthetic materials (Grandgeorge et al. 2018), and the biomechanics
of cells and soft tissues (Manning et al. 2010).

Here, we focus on the wetting of soft elastic substrates, for example by liquid drops. Apart
from being of intrinsic interest, drops offer a unique way to study static and dynamic deforma-
tions of soft interfaces owing to their nanometrically sharp contact line forcing. Over the years,
experiments such as those shown in Figure 1 have progressively revealed the salient features of
the wetting ridge below the contact line. This ridge dramatically alters the macroscopic spreading
dynamics, as the moving ridge induces strong viscoelastic dissipation inside the substrate (Carré
et al. 1996, Long et al. 1996, Karpitschka et al. 2015, Zhao et al. 2018a). It leads to phenomena
such as viscoelastic braking and dynamical depinning, which have no counterparts on rigid sur-
faces. Further complexities are encountered when the polymeric substrate swells by absorbing the
wetting liquid (Cohen Stuart et al. 2006, Kajiya et al. 2011, Dupas et al. 2014, Boulogne et al.
2015) and when dangling chains are present at the surface.

These soft wetting phenomena are not captured by the same laws as rigid wetting (Andreotti &
Snoeijer 2016, Style et al. 2017), and one is forced to critically revisit the foundations of capillarity,
most notably, (a) the nature of surface tension of soft solids and the underlying microstructure of
reticulated polymers, (b) the force balance near the contact line and the wetting boundary condi-
tions, (c) moving contact lines and dissipation mechanisms inside the substrate, and (d ) the result-
ing macroscopic motion of droplets. The purpose of this review is to address these fundamental
aspects of wetting on soft surfaces by discussing recent experimental and theoretical progress.

2. BASIC CONCEPTS

2.1. Soft Polymeric Materials

For ordinary solid materials, externally applied stresses change the interatomic distances and
thereby increase the internal energy. The resulting elasticity is of enthalpic origin and leads to
elastic moduli of typically 10–100 GPa. Conversely, for reticulated polymer networks that are not
in a glassy state, an applied strain puts chains in a less probable conformation, increasing the free
energy only for entropic reasons.These networks can therefore undergo large reversible deforma-
tions at relatively small applied stress and present small elastic moduli, proportional to the thermal
energy kBT and to the number of chains per unit volume [pieces of polymer between cross-links
or between points of entanglement (Watanabe 1999)]. As such, the stiffness of the network can be
varied over orders of magnitude via the density of cross-links or entanglements. A single polymer

286 Andreotti • Snoeijer
Review in Advance first posted on 
August 19, 2019. (Changes may 
still occur before final publication.)

A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 2

02
0.

52
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

U
ni

ve
rs

ity
 o

f 
Sa

sk
at

ch
ew

an
 o

n 
08

/2
2/

19
. F

or
 p

er
so

na
l u

se
 o

nl
y.

 



FL52CH12_Andreotti ARjats.cls August 10, 2019 15:26

60 16014012010080
0

10

20

30

40

50

500
x (μm)

u x
 (μ

m
)

u z
 (μ

m
)

x/b

z/
b

–50–100

0

0.5

1.0

0

0.5

–0.5

c

g

ba

f

L I Q U I DL I Q U I DL I Q U I D V A P O RV A P O RV A P O R

S O L I DS O L I D

S O L I D

ed

2 
m

m

20
 n

m

20
0 

µm

2 
µm

2 
µm

50 µm

500 μm

Figure 1

(a–d ) Historical overview of wetting ridges observed on soft PDMS (polydimethylsiloxane) gels. The experimental methods used are
(a) white-light interferometry, (b) laser scanning confocal microscopy, (c) X-ray, and (d ) confocal microscopy. (e) Wetting ridges in
molecular dynamics simulations of a polymer drop on a brush, for varying wettability. ( f ) Peeling of a tape from a PDMS gel (Perrin
et al. 2019). (g) Peeling of a tape from a pressure-sensitive adhesive—note the fibril formation at the peeling front (Villey et al. 2015).
Panels adapted with permission from (a) Carré et al. (1996), copyright 1996 Springer Nature; (b) Pericet-Camara et al. (2008),
copyright 2008 American Chemical Society; (c) Park et al. (2014); (d ) Jerison et al. (2011), copyright 2011 American Physical Society;
and (e) Leonforte & Mueller (2011), copyright 2011 AIP Publishing.

chain has a mechanical response that depends on its length N : In the simple Rouse model, its
spring constant scales as kBT/Nb2, where b is the monomer length, and its relaxation time τ scales
as ζ b2N 2/kBT , where ζ is the monomeric friction coefficient controlling the diffusion (Boese &
Kremer 1990).

Before entering their wetting behavior, we first provide a very brief description of the differ-
ent types of polymeric substrates that can be encountered. For a complete view on the statistical
physics involved, we refer the reader to textbooks by de Gennes (1979), Doi & Edwards (1988),
Rubinstein (2003), and Binder & Kob (2011).

The adhesive properties of polymers strongly depend on their molecular architecture, as illus-
trated by peeling experiments. Figure 1f shows a reversible adhesive with a smooth viscoelastic
ridge (Perrin et al. 2019), while Figure 1g involves a pressure-sensitive adhesive that leads to the
formation of elongated fibrils (Villey et al. 2015). The latter polymer has strong adhesive bonds
(Deplace et al. 2009) and ubiquitous dangling ends that need to be pulled from the matrix during
debonding (Figure 2a), in contrast to the former (Figure 2b). The energy required to fracture
the two interfaces, �, is proportional to the chain length and to the surface density of chains, �
(Figure 2e) (Creton et al. 1992), and can therefore be orders of magnitude larger than the capillary
adhesion energy due to van derWaals interactions (de Gennes 1989, Raphael &DeGennes 1992).

The network structure also determines the viscoelastic bulk rheology. Of particular impor-
tance for soft wetting are polymer gels (Figure 2b). These exhibit a fractal structure, with chain
lengths spanning from the length of the prepolymer to the size of the sample. By consequence,
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Storage G′(ω) and
loss G′′(ω) moduli:
the in-phase and
out-of-phase stresses
of a material under
oscillatory strain,
respectively;
viscoelastic media
exhibit both a
reversible (storage)
and a dissipative (loss)
response
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Figure 2

(Top row) Schematics of different architectures of polymeric soft solids: (a) a pressure-sensitive adhesive, characterized by many dangling
chains (yellow) connected to a backbone network (red ); (b) a polymeric gel, characterized by a multiscale network without dangling
chains; (c) a swollen gel with a liquid phase; and (d ) a polymer brush, here partly swollen. (e) The fracture toughness � of interfaces
reinforced with a block copolymer plotted as a function of the effective areal density of chains, �. ( f ) A hydrogel sphere (with shear
modulusG = 61 Pa) on a silicon wafer, totally wetted by water. (g) Wetting phase diagram of a melt of polystyrene of lengthN in contact
with a brush of polystyrene chains end-attached to a substrate with a grafting density �. Solid lines are guides for the eyes through
experimental points. Abbreviations: PS-PMMA, poly(styrene-b-methyl methacrylate); PS-PVP, poly(styrene-b-2-vinylpyridine).
Panels adapted with permission from (e) Creton et al. (1992), copyright 1992 American Chemical Society; ( f ) Chakrabarti et al. (2018),
copyright 2018 American Chemical Society; and (g) Maas et al. (2002), copyright 2002 American Chemical Society.

the relaxation spectrum spans orders of magnitude in frequency ω. This is reflected by the storage
G′ and loss G′′ moduli, scaling as ωn with an exponent n ≈ 0.5 (Winter & Chambon 1986) close
to that given by the Rouse model (Onogi et al. 1970). This viscoelastic response determines the
substrate’s dissipation in dynamical wetting experiments (de Gennes 1996, Long et al. 1996).
When providing extra cross-links with respect to the gel point, the material exhibits a finite
(static) shear modulus G at low frequency.

The substrate properties change dramatically when the network is swollen by a solvent
(Figure 2c). A water drop placed on a hydrogel imbibes into the porous substrate, and one
cannot always sharply define a contact line (Kajiya et al. 2011). A hydrogel sphere placed on a
rigid surface, which is completely wetted by water, exhibits a finite contact angle (Figure 2f )
(Chakrabarti et al. 2018). Polymer gels may even be swollen by a melt phase of the same polymer:
Small fractions of un-cross-linked chains can alter the adhesive and dynamical properties ( Jensen
et al. 2015; Pham et al. 2017; Hourlier-Fargette et al. 2017, 2018). Swelling is also a key aspect
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Shuttleworth effect:
the difference between
surface tension ϒ and
surface energy γ ,
which arises whenever
γ depends on the
surface strain, ε

Surface strain: change
in relative length of a
surface element,
measured with respect
to the substrate’s
reference state

of brushes (Figure 2d), which are polymer chains tethered to a rigid substrate either covalently
or by adsorption (Alexander 1977, de Gennes 1980, Milner et al. 1988). Brushes exhibit intricate
wetting behaviors (Cohen Stuart et al. 2006, Leonforte & Mueller 2011, Mensink et al. 2019)
and can even be autophobic with respect to their own melt (Figure 2g) (Maas et al. 2002).

Evidently, the physical chemistry of soft polymeric interfaces constitutes a vast area of research
with numerous applications (Fleer et al. 1993). In the following, we primarily restrict ourselves
to the statics and dynamics of wetting in the simplest case, where the polymer network is not
swollen and where it does not present brush-like dangling chains. Part of the analysis will
assume that pinning (contact angle hysteresis) is absent. This idealized situation can indeed be
closely approached experimentally, e.g., by the frequently used PDMS (polydimethylsiloxane) gel
substrates (Figure 1), although many other systems are touched on as well.

2.2. Capillarity: Liquid Versus Elastic Interfaces

From a macroscopic thermodynamic perspective, interfaces are characterized by a surface energy,
γ . This represents the excess free energy per unit area of an interface (Rowlinson & Widom
1982, de Gennes et al. 2002). The order of magnitude of the surface energy is given by γ ∼
kBT/a2, where the scale a is a typical microscopic length. Mechanically, this gives rise to a surface
tension ϒi j , which is the surface-analog of the stress tensor. It represents the excess force per unit
length in the interface (Marchand et al. 2011); for a liquid, this tension is isotropic, ϒi j = γ δi j . In
what follows, the discussion concerns the two-dimensional case, for which we can stick to a scalar
description of ϒ . For an extensive review on mechanical implications of surface tension in soft
solids, we refer the reader to Style et al. (2017).

Unlike liquids, for elastic interfaces the surface tension ϒ and the surface energy γ are not
equal, owing to the Shuttleworth effect (Shuttleworth 1950, Muller & Saul 2004). The origin of
this difference is illustrated in Figure 3.Figure 3a shows that γ is the reversible energy associated
with the creation of a solid–vapor interface by separating two solid blocks (i.e., not accounting for
the fracture). This procedure is carried out at constant surface strain ε, although we remark that in
general the surface energy can depend on strain, i.e., γ (ε ). Figure 3b shows another way to create

b

L0L0
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0

–10 –5 0 5 10
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L0 (1 + e)L0 (1 + )

V A P O RS O L I D

z/b

γ

Figure 3

(a) The creation of two solid–vapor interfaces by dividing a solid block and bringing the interfaces far away from each other, while
keeping the surface strain ε constant. The excess energy per unit surface area γ equals the reversible work done during the quasi-static
separation. (b) The creation of a solid–vapor interfacial area by stretching the elastic solid. The change in interfacial energy equals the
work done by the surface tension ϒ and gives the Shuttleworth equation (Equation 1). (c) Molecular dynamics simulations of a
reticulated polymer. (Red line) Profile of the monomer density ρ, indicating the location of the solid–vapor interface (the position is
expressed in terms of monomer size b). (Blue line) Profile of the stress anisotropy, σt = σxx − σzz, across a stretched film. The effect of
surface tension manifests itself as the peak of σt , located inside the liquid–vapor interface (the integral gives ϒ). The hatched region is
the bulk elastic stress. Data from Liang et al. (2018a,b).
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Interfacial width:
capillary forces are not
perfectly localized but
spread out over a
molecular region of
size a between two
bulk phases

Elastocapillary
length: length scale
arising from the
balance of surface
tension and the shear
modulus, setting the
typical scale of wetting
ridges

a solid–vapor interface, by stretching the interface length by δL = L0δε. The associated work per
unit length,ϒδL, involves surface tension ϒ . Equating this work to the increase in surface energy,
δ(Lγ ) = δ [L0(1 + ε )γ ], one obtains the Shuttleworth equation,

ϒ(ε ) = d
dε

[(1 + ε )γ (ε )] = γ + (1 + ε )
dγ
dε

. 1.

The second term involves the derivative γ ′ = dγ /dε and emerges due to the change in surface
energy during stretching. This effect is not present for a simple liquid–vapor interface, for which
we write ϒLV = γLV = γ .

It is of interest to examine the effect of surface tension at the nanoscale, inside the interfacial
region (Weijs et al. 2013). The density profile across a soft interface exhibits a smooth transition
over the molecular distance a ∼ 10−9 m, (Figure 3c) (Liang et al. 2018a). Capillarity manifests
itself as an anisotropy of stress components, in the direction tangential (σxx) and normal (σzz)
to the interface. The stress anisotropy, σt = σzz − σxx, represents the excess tangential stress, or
tension, localized in the interfacial zone. This effect is well known for liquids (Kirkwood & Buff
1949, Nijmeijer et al. 1990), but the concept equally applies for reticulated polymer networks.
This is evidenced by the peak in σt (Figure 3c), whose integral gives the interfacial force per
unit length: the macroscopic surface tension, ϒ . Hence, the excess tangential stress inside the
interface, σt ∼ ϒ/a, can be estimated as kBT/a3 ∼ 107 − 108 Pa. In crystalline and glassy solids,
this stress is negligible with respect to elasticity,which is of enthalpic origin. By comparison,ϒ/a is
typically orders of magnitude larger than the entropic elastic modulus of a soft-polymer network,
G ∼ kBT/(Nb3), owing to the large number of monomers N between cross-linkers. Since the
monomer size b and the interfacial width a are both of molecular size, a crude estimate of the ratio
γ /G ∼ Nb3/a2 ∼ Na gives the so-called elastocapillary length.

We remark that Figure 3c was obtained from a molecular simulation of a simple cross-linked
polymer network without solvent or dangling chains, for which one expects a liquid-like interfa-
cial structure. The presence of dangling chains extends the interfacial region to the typical chain
length, which requires a specific description at a mesoscopic scale.

2.3. Scales of Elastic Wetting

In a continuum perspective, elastocapillary phenomena can be classified in terms of length
scales (Schroll et al. 2013, Bico et al. 2018). The elastocapillary length γ /G separates the small
scales dominated by capillarity from the large scales dominated by elasticity. By tuning the sub-
strate stiffness, γ /G can be varied over orders of magnitude, from submolecular up to millimeter
scales. This length must be compared to the nanometric interface width a and to the macroscopic
parameters such as the drop size R and the thickness e of the elastic substrate.

Figure 4a, subpanel i, illustrates the rigid limit (γ /G � a). The excess stress γ /a inside the
liquid–vapor interface is then negligible compared toG and cannot induce any deformation below
the contact line. Subpanel ii corresponds to the intermediate case (a � γ /G � R). Surface tension
dominates at small scales and a sharp wetting ridge is formed ( Jerison et al. 2011, Limat 2012,
Marchand et al. 2012b).On the scale of the drop, however, elasticity is still dominant and the liquid
angle remains unaffected. Subpanel iii illustrates the limit γ /G � R where elasticity plays no role
and the drop takes the shape of a liquid lens (Style & Dufresne 2012, Lubbers et al. 2014). An
extensive discussion of the boundary conditions at the contact line, in particular of the applicability
of Young’s law and Neumann’s law, follows in Section 3.

Figure 4b shows a drop on a thin membrane, in the regime γ /G � e � R. The membrane
is curved over the bending elastocapillary length,

√
B/γ , which is based on the bending rigidity,
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ia
a

e

ii iii b
γ/G

R

γ/G
B/γ

γ/G << a << R a << γ/G << R a << R << γ/G a << γ/G << e << R

θL
L I Q U I D

E L A S T I C  S U B S T R A T E

θL θL

θS θS

R

Figure 4

Scales of elastocapillarity. (a) Drops on thick elastic substrates of different stiffnesses, tracking the change of the liquid angle θL and of
the solid angle θS (insets). The elastocapillary length γ /G must be compared to the width of the interface a and the drop size R. (i) The
rigid limit, with contact angles governed by Young’s law (see Marchand et al. 2011 for the force balance on the liquid wedge).
(ii) Moderately soft substrates. The wetting ridge remains small compared to the drop size and θL still satisfies Young’s law. However, θS
is selected by Neumann’s law, which expresses the balance of surface tensions applied to the circular system. (iii) The soft limit, where
elasticity can be neglected on all scales. The drop resembles a liquid floating lens. (b) Typical case for a thin membrane of thickness e.
The capillary-induced bending remains smooth at the bending length scale,

√
B/γ .

B ∼ Ge3. In that case, the wetting ridge is a negligible feature, and one enters the realm of elas-
tocapillary bending and stretching of fibers and sheets (Roman & Bico 2010, Duprat et al. 2012,
Schroll et al. 2013, Schulman &Dalnoki-Veress 2015, Bico et al. 2018,Davidovitch &Vella 2018).

3. THE WETTING BOUNDARY CONDITIONS

From amacroscopic perspective, interfaces can be treated as perfectly sharp.The effects of wetting
then arise as boundary conditions at the contact line. Here we discuss the energetic derivation of
these boundary conditions on elastic surfaces, in the absence of swelling by the wetting liquid.
This is complemented by equivalent mechanical interpretations, which allow one to clarify the
rigid-to-soft transition, and by a discussion of recent experiments.

3.1. Rigid Substrate Limit: Young’s Law

To derive the classical Young’s law on a rigid solid, one starts from the free energy F of the liquid–
vapor interface of profile h(x) whose contact line location is defined by the position x = r,

F =
∫ r

−∞

[
γ (1 + h′2)1/2 + γSL

]
dx+

∫ ∞

r
γSV dx. 2.

The solid–liquid and solid–vapor surface energies respectively are γSL and γSV. Minimizing F
with respect to variations of the interface profile δh(x) and the contact line position δr yields, after
integrating by parts,

δF =
[

γ

[1 + h′(x)2]1/2
+ γSL − γSV

]
x=r

δr −
∫ r

−∞
γ κ (x) δh(x) dx, 3.
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where κ = h′′/(1 + h′2)3/2 is the interface curvature (Snoeijer & Andreotti 2008). The equilibrium
condition δF = 0 provides both the normal stress balance at the interface, γ κ being the Laplace
pressure, and the boundary condition at the contact line x = r, namely Young’s law,

γ cos θL = γSV − γSL. 4.

Any additional macroscopic force such as gravity or electrostatics acts as an additional normal
stress along the interface but does not affect the boundary condition; the boundary condition can
be interpreted as a horizontal force balance on an infinitesimal wedge of liquid near the contact
line (Figure 4a, subpanel i inset).

3.2. First Boundary Condition: Neumann’s Law for Contact Angles

When the substrate is soft enough to be deformed by the liquid, the elastic energy stored inside
the substrate must be included in F . Figure 5a defines the curvilinear coordinate s along the
interface, the tangential vector t and normal vector n. The stress balance at the interface reads

σ · n − T · n = ∂

∂s
(ϒS t) , 5.

where σ · n ≡ σ is the elastic traction and T · n is the liquid traction; these are due to the stress

tensors in the substrate σ and in the liquid T, respectively. The surface tension of the solid is
denoted ϒS.

dc

ba

e

L I Q U I D

L I Q U I D V A P O R

Initial
positions

After
displacement

Dry region

Wet region

V A P O R

S O L I D

S O L I D

ez

ex

r +r –

tSL tSV

tLV

n

s

dx

dx dx

s = r

t

θL

Figure 5

(a) Definition of the unit vectors ex and ez and the curvilinear coordinate s, running along the solid interface. The contact line is
located at s = r so that r+ and r− are respectively the limits on both sides. (b) Tangent unit vectors t+ = tSV and t− = tSL at both sides
of the contact line. (c–d ) Wetting at equilibrium requires the energy to be minimal with respect to all possible types of contact line
displacement (Snoeijer et al. 2018). (c) Horizontal and vertical displacement in the lab frame. Equilibrium gives the first boundary
condition (Equation 7), i.e., Neumann’s law. (d ) Relative motion of the substrate, while the contact line remains fixed in the lab frame.
The colored points indicate the exchange of material points from the dry (red ) to the wetted region (blue). Equilibrium gives the second
boundary condition (Equation 9) on the chemical potential. (e) The liquid contact angle θL can be inferred from a global displacement
dx of the contact line. The region close to the contact line remains unchanged, and the changes in (elastic and capillary) energy occur at
the edge of the indicated contour.
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The boundary condition at the contact line is again obtained from a variation of the contact line
position. Figure 5c shows that this involves both horizontal and vertical displacements (Snoeijer
et al. 2018). By consequence, there is now a vectorial boundary condition,

γ tLV + [ϒS t]r
+
r− =

∫ r+

r−
ds σ. 6.

This can be interpreted as the integral of Equation 5 over an infinitesimal zone across the con-

tact line (Figure 5b), using the perfectly localized liquid traction, T · n = γ tLVδ(s − r) (Limat
2012).When the substrate is forced into a wedge, the elastic stress is only logarithmically singular
(Lubbers et al. 2014), also at large elastic deformation (Singh & Pipkin 1965). Given the weak
stress singularity, the integral over σ vanishes and Equation 6 becomes

γ tLV + ϒSVtSV + ϒSLtSL = 0. 7.

Figure 5b illustrates this result, known as Neumann’s law, as clearly observed for the wetting
of soft gels (Figure 1). This law is normally used for liquid phases (de Gennes et al. 2002) but
also applies to sufficiently soft elastic substrates (Limat 2012, Marchand et al. 2012b, Style &
Dufresne 2012, Style et al. 2013a).The weak elastic singularity of the (Cauchy) stress persists when
prestretching the substrate,which therefore remains, contrary to recent suggestions (Masurel et al.
2018), integrable and does not contribute to Neumann’s law (Snoeijer et al. 2018).

After these macroscopic considerations, it is instructive to consider the crossover from rigid
to soft substrates from Equation 6. Microscopically, the liquid traction is not sharply localized in
space but is spread out over the nanometric width a (Figure 3c). In the stiff limit, γ /G � a, the
substrate remains flat and one recovers Young’s law (Equation 4). In that case, Equation 6 can be
used to compute the integral of elastic traction—integrating not over an infinitesimal zone, but
over the contact line width, a. In the vertical direction this gives γ sin θL to balance the upward
pull of the droplet. This approach was already taken on by Rusanov (1975), Shanahan (1987),
and White (2003) when computing the shape of the ridge for small deformation. Conversely, in
the soft limit γ /G � a where the solid forms a sharp wedge, the integrated elastic force per unit
length Tel can be estimated as

Tel ∼
∫ r+a

r−a
σ ds ∼ Ga log

γ

Ga
. 8.

Molecular dynamics simulations indeed confirmed such an elastic correction to Neumann’s law
(Liang et al. 2018b). Figure 6 reports Tel for both a droplet and a rigid particle, in contact with a
cross-linked polymer network for a range of stiffnesses, here fitted with Equation 8. For experi-
ments on soft wetting, γ /G is typically above the micron scale, for which the elastic correction to
Neumann’s law is less than one percent.

3.3. Second Boundary Condition: Surface Strain Discontinuity
at the Contact Line

In contrast to the rigid limit, the substrate’s elasticity allows for relative motion while the contact
line remains stationary in the lab frame (Figure 5d). This motion involves an exchange of surface
material across the contact line, indicating that the contact line is not pinned.This implies a second
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4

3

2

1

0
0.80.60.40.20

Shear elastic modulus, G ~ kBT/b3

Elastic force,
Tel ~ kBT/b2

γ

SLSV

L I Q U I DV A P O R

S O L I D

Equation 8,
best fit

Cylinder radius (b)

17.8
22.9
27.3
31.4

Strength of solid–liquid
interaction (kBT)

0.4
0.75
1.2

Figure 6

Rigid-to-soft transition on the microscopic scale. (Inset) The force balance on a control volume surrounding the contact line. The
generalized Neumann’s law involves the three surface tensions, γ , ϒSV, and ϒSL, and a residual elastic force per unit length, Tel. (Main
graph) Elastic force Tel as a function of the shear elastic modulus G, measured in molecular dynamics simulations by Liang et al. (2018b).
Data are represented in units of the thermal energy kBT and the monomer size b. Data are fitted by Equation 8, showing that Tel
vanishes in the continuum limit aG/γ → 0, where a is the molecular size and G is the shear modulus. Data from Liang et al. (2018b).

boundary condition (Snoeijer et al. 2018),

μSV = μSL, with μ = (1 + ε )2γ ′(ε ) + fel +
∫ r±

r
(σ · t) ds. 9.

Here, fel is the (surface) density of elastic energy that is associated to changing the material point
below the contact line; it was shown to vanish in linear elasticity (Snoeijer et al. 2018) but possibly
contributes at large strain. The integral over σ again vanishes in the soft limit (γ /G � a). The
conditionμSV = μSL can be viewed as the equality of chemical potential that governs the exchange
of material across the contact line. This is in direct analogy with equality of chemical potential
across a liquid–vapor interface that regulates the discontinuity in density. Here, Equation 9 serves
as a boundary condition for the surface strain ε, which in general can be discontinuous across the
contact line.

In the rigid limit γ /G � a, any relative motion already implies a contact line displacement.
The conditions of Equations 6 and 9 are then obtained from the variation of the same degree of
freedom. In this rigid limit, the equality μSV = μSL predicts the existence of a horizontal elastic
force per unit length at the contact line,

∫
(σ · t) ds = ex · ∫

σ ds = γ ′
SV − γ ′

SL; the same follows
from Equation 6 in combination with Young’s law (Weijs et al. 2013). This tangential force has
indeed been observed in molecular simulations (Seveno et al. 2013).
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THE MEMBRANE LIMIT

The membrane limit appears when the layer thickness e and γ /G are negligible with respect to the other scales
(Figure 4b). The substrate is locally flat, and the elastic energy can then be integrated across the thickness. For
small strains, the membrane limit gives an elastocapillary membrane energy per unit area, γ (ε ) +Y ε2/2, where Y
is the membrane stiffness. Hence, Equation 9 simplifies to μ = γ ′ +Y ε, and the condition μSL = μSV implies a
strain discontinuity, εSV − εSL = (γ ′

SL − γ ′
SV )/Y (Weijs et al. 2013,Neukirch et al. 2014, Andreotti & Snoeijer 2016).

This discontinuity is indeed observed in experiments and molecular simulations using an elastic Wilhelmy plate
(Figure 7a). The liquid contact angle with respect to the membrane follows from Young’s law based on the total
membrane energy, and this gives γ cos θL = γSV − γSL +Y (ε2SV − ε2SL)/2. Hence, the Shuttleworth effect implies
an ε2-correction of the liquid angle (Weijs et al. 2013, Neukirch et al. 2014). The equations for the contact angle
and the strain discontinuity provide the boundary conditions for the locally flat membrane (Figure 3b). The actual
contact angle in the lab frame is obtained by solving the global membrane problem (Schroll et al. 2013,Davidovitch
& Vella 2018).

3.4. Selection of the Liquid Contact Angle

Themost prominent feature of wetting is the liquid angle θL with respect to the reference solid sur-
face. It is not selected locally by theNeumann condition but emerges from the global,macroscopic
elastocapillary problem of Equation 5 subjected to the two boundary conditions of Equations 6
and 9. The scenario for thick elastic layers is summarized in Figure 4a. For a drop of size R, the
liquid angle undergoes a transition fromYoung’s toNeumann’s law—but this time onmacroscopic
scales, crossing over at γ /G ∼ R.

Of particular experimental relevance is the regime γ /G � R, where the wetting ridge appears
as a small feature on an otherwise flat substrate. In that case, θL can be derived from a global
displacement of the contact line, as indicated in Figure 5e, comparing the surface and elastic
energies at the edges of the contour, far away from the contact line. At the contact line, this global
displacement involves a superposition of themotions inFigure 5c,d.Whether there is a correction
to Young’s law for θL depends on the elastic energy stored on both sides of the contact line, far
from it. For free-standing membranes, the Shuttleworth effect can lead to a strain discontinuity,
which gives an elastic correction to Young’s law of order ε2 (see the sidebar titled The Membrane
Limit). For membranes glued to a rigid support, however, any jump in strain near the contact line
will be screened by the finite membrane thickness. Hence, the strains far away from the contact
line are equal, and θL follows from Young’s law.

3.5. Is There a Shuttleworth Effect for Polymeric Solids?

The Shuttleworth effect is well established in crystalline materials (Muller & Saul 2004). For
nonglassy polymer networks, however, it is less obvious that a change in the surface strain ε would
alter the molecular structure of the interface, which is usually thought of as being close to that
of an incompressible liquid. Hence, it is not clear a priori that soft polymeric substrates exhibit
a strong dependence of surface energy γ on the applied strain ε. Although different numerical
and theoretical works have been devoted to this question (Weijs et al. 2013, Liang et al. 2018b,
Masurel et al. 2018), it is important in this review to focus on experimental results.

Experimental evidence for a strong Shuttleworth effect in soft wetting is provided inFigure 7a,
which shows the elastic displacement inside a thin elastomericWilhelmy plate, partially immersed
(Marchand et al. 2012a). The observed discontinuity of strain across the contact line implies
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Other elastomeric substrates
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Figure 7

Soft wetting experiments investigating the Shuttleworth effect. (a) The elastic Wilhelmy plate, where an extensible rod (of
elastocapillary length γ /G ∼ 1µm) is partially immersed in a liquid. The data represent the vertical displacements along the rod,
showing a discontinuity of strain, ε = duz/dz, across the contact line. Data from Marchand et al. (2012a). (b) Change of the liquid
contact angle δθL versus imposed strain ε∞. (Red circles; lower axis) θL on a stiff glassy polymer exhibits a strong dependence on strain.
(Other symbols; upper axis) θL for drops on various soft elastomers exhibits no dependence on strain. Triangles correspond to various
elastomeric substrates used in experiments by Schulman et al. (2018), and diamonds correspond to soft PDMS (polydimethylsiloxane)
(advancing and receding angles) used in experiments by Snoeijer et al. (2018). (c) Dependence of solid surface tension ϒ on strain ε on
PDMS, as inferred from the change in the solid angle θS of the wetting ridge (inset). Data from Xu et al. (2017).

γ ′
SV − γ ′

SL = 43 ± 10 mN/m, which is comparable to the relevant surface energies. A strong con-
tact angle hysteresis was present in these experiments.

A recent series of experiments has systematically investigated the contact angles obtained upon
externally stretching the substrate (Schulman et al. 2018). Figure 7b reports changes in the liquid
contact angle δθL as a function of the imposed strain ε∞ (with negligible contact angle hysteresis).
These experiments were carried out in the regime where θL follows Young’s law, so that they
directly investigate the strain dependence of γSV − γSL. For stiff glassy polymers,γ /G � a, there is
a clear change of contact angle, and hence a strong Shuttleworth effect, observed for four different
liquid–glass combinations (only one data set is shown). The other data correspond to drops on a
broad variety of soft elastomers with γ /G � a. These exhibit no variation of θL, even for strains up
to ε∞ = 1. This implies that γSV − γSL does not depend on strain ε. This robust outcome, found
for seven different liquid–elastomer combinations (Schulman et al. 2018, Snoeijer et al. 2018), can
be interpreted as evidence either that there is no measurable Shuttleworth effect or that there is
a fundamental reason why γSV and γSL share the same dependence on ε. The second boundary
condition (Equation 9), which needs to be satisfied in the absence of contact line pinning, indeed
requires γ ′

SV = γ ′
SL in the regime of small deformations (Snoeijer et al. 2018). However, rigorous

results for large deformations are currently lacking, and it is unknown why many polymeric gels
would obey this property.

In another series of experiments on PDMS, the solid angle θS was measured as a function of the
imposed strain ε∞ (Xu et al. 2017). Figure 7c shows that θS becomes shallower with strain—even
though θL remains constant. The lack of dependence of θS with drop size and substrate thickness
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consolidates the interpretation of these experiments using Neumann’s law (Equation 7) without
any residual elastic tension, as mentioned in the discussion of Equation 8 above. The change of θS

then implies a strong dependence of ϒ on ε. This method also allows for a direct measurement of
the tensorial nature of surface tension when applying anisotropic stretching (Xu et al. 2018).

A definite interpretation of these experiments will require the development of a fully nonlinear
modeling approach and a consistent treatment of the Shuttleworth effect, including the second
boundary condition (Equation 9). This needs to be complemented with a calibration of the mate-
rial properties in the regime of large elastic deformations to account for the influence of stretching
on the ridge shape.

4. DYNAMICAL ELASTOCAPILLARITY

4.1. Viscoelastic Braking

Pioneering studies by Shanahan&Carré (1995),Carré et al. (1996), and Long et al. (1996) revealed
a dramatic slowing down of contact line motion when the substrate becomes exceedingly soft.
The motion of the wetting ridge induces a time-dependent deformation of the substrate, leading
to strong viscoelastic dissipation that opposes rapid motion. Typical velocities of millimeter-sized
drops sliding under the influence of gravity can be as low as 10–100 nm/s (Karpitschka et al. 2016a)
due to strong viscoelastic braking. A direct illustration of this effect occurs when drops move more
rapidly over thin layers, as these induce less dissipation inside the substrate (Zhao et al. 2018a).

Figure 8a shows experimental data for a variety of dynamical wetting experiments.When the
contact linemoves with a velocityU , the contact angle changes from the equilibrium contact angle
according to δθL ∼Un, with an exponent n close to 0.5. Linear viscoelasticity precisely predicts
this behavior and relates the exponent n to that of the loss modulus, G′′/G ∼ (ωτ )n (Long et al.
1996). The contact line speedU excites the viscoelastic solid at a frequency ω ∼U/�, where � is
the width of the ridge; at small velocities, � is on the order of γ /G. A mechanical analysis on the
scale of the wetting ridge shows that the contact line motion induces a rotation of the wetting
ridge (Karpitschka et al. 2015), shown in the inset of Figure 8a. The associated dissipation in the
solid follows as

1
2

∫
dxdy σ : γ̇ ∼ �2G′′ ω ∼ �2G

(
U τ

�

n U
�

10.

and is balanced with the injected power∼γU δθ due to capillary forces.Whenmoving at a velocity
U , the contact angle therefore changes from the equilibrium contact angle according to

δθL ∼
(
U τ

γ /G

n

. 11.

This is in excellent agreement with experiments, both for advancing and receding motion
(Figure 8a). Importantly, the dissipation is only integrable for n ≤ 1 (Long et al. 1996). For n = 1,
the standard moving contact line singularity for viscous liquids is recovered (Bonn et al. 2009,
Snoeijer & Andreotti 2013). For an analogy between viscoelastic braking and dynamical adhesion,
see the sidebar titled Dynamical Adhesion.

The argument can be made rigorous by deriving the shape of the wetting ridge from
Equation 5, where the elastic traction σ is computed using a Green’s function formalism ( Johnson
1985). This Green’s function approach has been extensively used to compute static wetting ridges
( Jerison et al. 2011, Limat 2012, Marchand et al. 2012b, Style & Dufresne 2012, Bostwick et al.
2014, Lubbers et al. 2014) but can be extended to the dynamical case to account for the frequency
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Figure 8

Energy dissipation inside a moving wetting ridge. (a) Variation of the liquid angle δθL as a function of the contact line velocityU in
different liquid–solid wetting experiments: formamide (red triangles) and N-methylpyrrolidone (blue squares) spreading on silicon rubber
(Shanahan & Carré 1995), water on a PDMS (polydimethylsiloxane) gel (white circles) (Karpitschka et al. 2015), and fluorosilicone oil on
a stretched PDMS gel in the advancing (orange diamonds) and receding (green diamonds) directions (Snoeijer et al. 2018). The solid gray
lines show the best fits by power laws, and the red curve includes phenomenologically the saturation at large velocity. (b) Relation
between the dissipative force f and velocityU in solid–solid adhesion experiments: peeling of cross-linked sheets of polybutadiene
(orange squares) (Gent 1996); polyurethane strips peeled from glass (blue squares) (Maugis & Barquins 1978); a cylinder moving on
natural rubber, allowed to rotate (green circles) (Charmet et al. 1995) or not (gray diamonds) (Robbe-Valloire & Barquins 1998); peeling of
an elastic film from a PDMS gel (red triangles) (Perrin et al. 2019). The solids lines show best fits by power laws. Data provided courtesy
of the cited authors and replotted here.

dependence of the storage and loss moduli. For small velocities, this linear response framework
gives the same result (Equation 11) for the ridge rotation (Karpitschka et al. 2015). Hence, the
liquid angle passively follows the ridge rotation and maintains a Neumann balance even in the
dynamical case.

At larger velocities, however, the size of the wetting ridge decreases. This is because the effec-
tive stiffness increases at frequencies beyond τ−1, giving rise to a dynamical elastocapillary length,
� ∼ γ /|G′ + iG′′|. The volume over which dissipation occurs is then diminished, leading to a sat-
uration of Equation 11 at large velocities; δθL approaches a constant value (Figure 8a) at large
velocities. The saturation is indeed observed above the viscoelastic velocity γ /(Gτ ) (Karpitschka
et al. 2015), providing further direct evidence that the wetting dynamics is governed by substrate
viscoelasticity.

4.2. Stick-Slip Dynamics

When a droplet is forced to move at high velocity, a remarkable stick-slip dynamics is observed
(Pu & Severtson 2008; Pu et al. 2010; Kajiya et al. 2013, 2014; Karpitschka et al. 2015; Park et al.
2017; van Gorcum et al. 2018). Figure 9a shows the liquid angle as a function of time from a dip
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DYNAMICAL ADHESION

Soft adhesives are polymeric layers that are used to bind rigid structures together; they must stick on most surfaces
by simple contact under a low normal stress (Creton 2003). Their adherence strength is strongly dependent on the
peeling velocity. Most pressure-sensitive adhesives exhibit a large nonlinear viscoelastic dissipation during debond-
ing due to the formation of fibrils from cavitation (Teisseire et al. 2007, Villey et al. 2015) (Figure 1g), as observed
using probe tack tests (Nase et al. 2008, Vilmin et al. 2010, Chopin et al. 2018). Polymer chains across the fracture
are stretched until they store an elastic energy comparable to the covalent binding energy (Lake & Thomas 1967).
A bond-breaking event dissipates all this stored energy, so that the fracture energy � is proportional to the lengthN
of the chain and to the cross-link density �. Cavitation and fibrillation typically take place when the elasto-adhesive
length �/G is larger than the adhesive thickness e (Amouroux et al. 2001, Deplace et al. 2009, Creton & Ciccotti
2016).
Conversely, reversible adhesives can be peeled without bulk cavitation or plastic deformations and have been the

subject of recent interest in biomimetics (Autumn et al. 2000, Ghatak et al. 2004, Boesel et al. 2010, Jagota & Hui
2011). During fracture, the front exhibits a wetting ridge similar to that observed in soft wetting (Figure 1f ), and
the resulting dynamics indeed bears a strong resemblance. Figure 8b reviews the relation between the dissipative
force per unit length and the contact line velocity for different fracture tests and different reversible adhesives.They
indeed all exhibit a power law dependence that originates from the viscoelastic rheology (Schapery 1975, Newby
et al. 1995, de Gennes 1996).
A deep connection between soft wetting and (reversible) adhesion has indeed been established over the last years,

primarily in the static regime. Upon increasing the elastocapillary length, now given by γ /G, one can continuously
go from the classical JKR ( Johnson, Kendall, and Roberts) theory in solid mechanics to the normal case of liquid
wetting (Salez et al. 2013, Style et al. 2013c, Hui et al. 2015, Cao et al. 2014). Surface tension in fact provides the
the small-scale regularization of the crack singularity observed in JKR ( Johnson et al. 1971, Johnson 1985, Liu
et al. 2014, Karpitschka et al. 2016b) and in dynamical situations controls the size over which dissipation takes place
(Perrin et al. 2019).

coating experiment (Kajiya et al. 2013). Importantly, the stick-slip motion is not associated with
permanent defects of the substrate (Bonn et al. 2009, Snoeijer & Andreotti 2013) but here results
dynamically from the self-induced wetting ridge. In solid friction, stick-slip occurs as an instability
due to a decrease of the friction force when the velocity increases (Baumberger & Caroli 2006).
The instability disappears at large velocity due to structural aging (Rice & Ruina 1983). Velocity
weakening is also the mechanism invoked to explain the stick-slip observed during the peeling of
adhesive tapes (Cortet et al. 2007, De Zotti et al. 2019), and a similar shear weakening leads to the
formation of shear bands in complex fluids (Divoux et al. 2016).

In the dynamical wetting of soft solids, the friction force results from the viscoelastic loss due to
the ridge motion. A velocity weakening mechanism would therefore relate stick-slip dynamics to
the rheology. Indeed, stick-slip appears when the frequency of excitation due to the contact line
motion becomes comparable to the rheological cross-over frequency τ−1 at which the storage
and loss moduli become comparable. For paraffin gels, stick-slip is observed in an intermediate
range of velocities (Kajiya et al. 2013, 2014). At high and low speeds, one recovers a continuous
spreading, as in solid friction, corresponding to a purely viscous and a purely elastic response,
respectively. For PDMS gels, however, a single transition from continuous to stick-slip motion
has been reported (Karpitschka et al. 2015, Park et al. 2017, van Gorcum et al. 2018). The lack of
continuous motion at high speed can be traced back to the PDMS rheology at high frequency, for
which G′ and G′′ remain comparable for all relevant frequencies beyond τ−1.
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Figure 9

Stick-slip motion during forced spreading. (a, inset) Picture of a SBS–paraffin gel surface after the spreading of a drop whose stick-slip
has left multiple circular patterns. Data from Kajiya et al. (2013). (a) Time evolution of the liquid angle θL in a dip-coating experiment,
performed with the same substrate. The contact angle slowly decreases as it sticks to the substrate and suddenly increases during a slip
event. Data from Kajiya et al. (2014). (b) Wetting ridge profile as a function of time during a stick-slip cycle, as the contact line is forced
over a PDMS gel. Note that the tip angle of the wetting ridge increases when approaching the depinning event. (Inset) Space-time
diagram. Abbreviations: PDMS, polydimethylsiloxane; SBS, poly(styrene-b-butadiene-b-styrene). Data from van Gorcum et al. (2018).

In the case of PDMS, however, friction does not decrease with velocity. Instead of a single
wetting ridge that accelerates during slip events, direct visualizations have shown that the contact
line depins from its own wetting ridge and surfs it (Park et al. 2017, van Gorcum et al. 2018).
The depinning is governed by the Gibb’s inequality that is normally used for sharp edges on rigid
surfaces (van Gorcum et al. 2018) and is related to the increase of the solid angle of the ridge θS

with contact line velocity (Figure 9b). This change of θS points either to time-dependent surface
stresses or to dynamical effects beyond a simple static Neumann balance. Although for purely elas-
tic media the wetting ridges decay after depinning, for some systems plastically deformed ridges
remain after stick-slip events (Pu et al. 2010), confirming the generality of the depining scenario.

4.3. Manipulating Droplet Motion

When exposed to a humid environment, the deformability of the substrate strongly affects the
condensation of droplets (Sokuler et al. 2010) (Figure 10a). Similar features are observed on
lubricant-infused surfaces (Kajiya et al. 2016), where instead of a gel layer the drop is in contact
with a viscous lubricant that is maintained in a porous substrate (Schellenberger et al. 2015, Keiser
et al. 2017). Both cross-linked polymer networks and lubricant surfaces can exhibit vanishing con-
tact angle hysteresis, making them of particular interest for applications such as antifouling and
food packaging (Wong et al. 2011, Solomon et al. 2016). In addition, the use of soft coatings can
be highly effective for the suppression of splashing (Howland et al. 2016).

Once several drops are in close proximity, the substrate deformation leads to intricate interac-
tions between adjacent drops (Figure 10b). This inverted Cheerios effect resembles the capillary
interaction of solid particles at liquid interfaces (known as the Cheerios effect), except that the
roles of liquid and solid are reversed. The interactions can be manipulated from attractive to

300 Andreotti • Snoeijer
Review in Advance first posted on 
August 19, 2019. (Changes may 
still occur before final publication.)

A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 2

02
0.

52
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

U
ni

ve
rs

ity
 o

f 
Sa

sk
at

ch
ew

an
 o

n 
08

/2
2/

19
. F

or
 p

er
so

na
l u

se
 o

nl
y.

 



FL52CH12_Andreotti ARjats.cls August 10, 2019 15:26

ba cc

150 µm150 µm 150 µm150 µm

Figure 10

(a) Condensation on two PDMS (polydimethylsiloxane) surfaces cooled simultaneously under identical experimental conditions, the
left one being five times softer than the right (Sokuler et al. 2010). (b) The inverted Cheerios effect: a three-dimensional calculation of
the elastocapillary meniscus between two drops, leading to interactions (Karpitschka et al. 2016a). (c) Droplet durotaxis. Glycerol
droplets, deposited on a flat surface with stiffness gradients, move toward the thickest regions of the substrate (Style et al. 2013b). Panel
a adapted with permission from Sokuler et al. (2010), copyright 2010 American Chemical Society.

repulsive by tuning the geometry of the substrate (Karpitschka et al. 2016a). A similar approach
to manipulate droplet motion is achieved by imposing gradients in the mechanical properties of
the substrate. Droplets exhibit durotaxis (Style et al. 2013b), resembling that of biological cells
(Saez et al. 2007, Trichet et al. 2012), and tend to migrate toward soft regions (Figure 10c).
Such a migration was observed for sliding drops, exhibiting a curved trajectory in the presence of
gradients of dissipation, bending toward thicker regions (Zhao et al. 2018a).

4.4. Dynamical Wetting of Brushes and Swollen Gels

The continuum vision of the dynamical elastocapillary problem is perfectly adapted to the case of a
totally reticulated polymer gel without dangling ends or residual melt content. In this final section,
we report dynamical experiments on other systems, such as brushes and swollen gels. Figure 2g
showed that brushes are highly effective in changing the wettability of the substrate (Maas et al.
2002) and can reduce contact angle hysteresis to within a few percent of a degree (Lhermerout
et al. 2016). For dynamical wetting, the dissipation inside the substrate can again be the dominant
factor, now due to the stretching and relaxation of the polymer chains. Figure 11a shows that the
dissipative force (quantified by δθ ) in a PDMS brush is proportional to the contact line velocity,
rescaled by the brush thickness e and the relaxation time τ (Lhermerout et al. 2016).This opens up
the promising perspective of using dynamic contact lines to probe the nanorheology of polymeric
materials (Restagno et al. 2002, Garcia et al. 2016).

The swelling of a polymer gel by un-cross-linked chains may substantially modify the contact
line dynamics: A capillary-induced phase separation can occur that extracts free chains from the
cross-linked polymer network, which then accumulate at the surface and alter the wetting velocity
(Hourlier-Fargette et al. 2017, 2018). Also without phase separation, the dynamics can be domi-
nated by poroelastic effects, competing with viscoelasticity ( Johnson 1982, Hong et al. 2008, Doi
2009). After removing the pulling force, the relaxation of wetting ridges may indeed be limited by
poroelastic diffusion (Zhao et al. 2018b, Berman et al. 2019).

Figure 11b reports an experiment motivated by the food industry, where water drops spread
on a soluble glassy polymer (Dupas et al. 2014). At low velocity, the change of the contact angle
is due to hydration of the substrate ahead of the contact line, resulting from the evaporation and
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Figure 11

(a) Dissipation induced by a liquid contact line moving on PDMS (polydimethylsiloxane) pseudo-brushes, collapsing data for varying
chain lengths. The graph shows the variation of the liquid contact angle δθL with the velocityU , rescaled by the thickness e of the brush
and the Rouse relaxation time τ . (Inset) Droplet on a brush in a molecular dynamics simulation (Mensink et al. 2019). (b) Liquid angle
θL as a function of the contact line velocityU for water droplets spreading on maltodextrin of different thicknesses e, from 100 nm to
8 µm. (c) Fracture energy release rate � as a function of front velocityU for gels with the same gelatin concentration (c = 5 wt%) and
various glycerol contents and therefore different viscosities η. Panels adapted with permission from (a) Lhermerout et al. (2016);
(b) Dupas et al. (2014), copyright 2014 American Physical Society; and (c) Baumberger et al. (2006b), copyright 2006 Springer Nature.

subsequent condensation on the substrate. The water concentration depends on the product of
the speed U and the layer thickness e and indeed leads to a collapse of data onto a master curve
(Figure 11b). Above a critical velocity, the diffusion is too slow and the substrate remains in a
glassy state. Note that the scaling with e is different in panels a and b, reflecting the different
dissipative mechanisms at play. Further complexity is encountered when the droplet wetting the
hydrogel contains solutes. A surfactant-laden drop can induce fracture of the gel (Bostwick &
Daniels 2013, Grzelka et al. 2017), while the addition of particles can offer strategies for the de-
position of particles to avoid the coffee stain effect, and even to tune the contact angle (Boulogne
et al. 2015, 2016, 2017).

We have already mentioned the large fracture energy � for debonding pressure-sensitive adhe-
sives, associated with pulling connecting chains from thematrix. Similar effects arise in the fracture
of swollen physical gels, in which cross-linking is due to weak reversible bonds. Figure 11c shows
that the crack velocity under a given load decreases when the solvent viscosity increases. In this
case, the dissipation is dominated by viscoplastic chain pull-out (Raphael & De Gennes 1992),
hence the dependence on chain/solvent friction (Baumberger et al. 2006a). This illustrates that
further dissipative mechanisms should be anticipated when exploring soft wetting in a broader
class of soft-polymer substrates.

FUTURE ISSUES

1. To turn soft wetting experiments into fully quantitative probes for (surface) rheology,
researchers should include in future models large elastic deformations (van Brummelen
et al. 2017,Masurel et al. 2018,Wu et al. 2018) and a fully consistent implementation of
the Shuttleworth effect.

2. What are the physicochemical conditions determining the appearance of the Shuttle-
worth effect?
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3. Under what conditions do soft substrates exhibit hysteresis? When can droplets induce
viscoplastic deformations inside the substrate? Could these effects be included as a pro-
cess zone at the wetting ridge, as in fracture mechanics?

4. What mechanisms could lead to the dynamical variation of θS (Figure 9), which initiates
the depinning in the stick-slip regime?

5. Similar to lubricant-infused surfaces, the combination of surface topography and func-
tionalization by polymers offers new routes toward surface engineering.

6. Contact line forces provide a unique mechanical probe of biological matter, while drops
on gels offer a model system to study principles on mechanobiology (Schwarz & Safran
2013, Charras & Sahai 2014, Humphrey et al. 2014).
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